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Abstract 

  Open source communities are the largest 
coding platforms that offer software developers 
an opportunity to engage in social activities 
relating to the software development. The 
developers can store and share their codes or 
projects with wider community of people using 
the repositories. Enabling its users to find relevant 
projects is the prime feature of the open source 
communities. Finding a relevant project among 
vast open source projects is a difficult task. 
Recommending a suitable project for developers 
can save their time and energy. Pengcheng  Zhang 
et.al. Used FunkR-pDAE, a personalized project 
recommendation approach based on Deep Auto-
Encoders, deep learning model. This approach has 
clear limitations, such as ignoring the dataset 
description and source code comment documents.   

  So, proposing a method for 
recommending a project in open source 
communities that takes into account the dataset 
description and source code comment documents, 
allowing for the discovery of more relationships 
between developers and projects this might in turn 
lead to increased precision rate. And also in the 
proposed work it is planned to generalize the 
model to recommend other open source 
communities i.e., github, kaggle and source forge 
along with integrating the dataset description and 
source code comment documents in order to mine 
more relations among the developers and 
projects. 

Keywords - Open Source; project 
recommendation; deep auto-encoder; GitHub. 

Introduction 

Open Source Software (OSS) development 
paradigm is defined as collaborative work between 

multiple developers. Through online development, 
geographically dispersed developers can work 
together to maintain or improve OSS projects. 
Through this development paradigm, the same  

software project includes participants from 
different areas of the world.  

 OOS also allows different developers to 
modify and improve source codes according to 
their own needs. In addition, unlike traditional 
organizations, OOS has a composite structure of 
social-technical processes and does not need to 
have a specific organization [9].  

It usually has a lively software process, 
constantly changing requirements and fast 
development phases. For traditional software 
development, if the software project team is large, 
the project progress is often very slow. OOS, on the 
other hand, is developed in an environment where 
developers can communicate and share code via the 
Internet rather than in the same geographical place.  

 Developers gather on social-coding sites 
in the same virtual environment, such as GitHub 
and Source forge, for mutual assistance and sharing 
of experiences. Developers can manipulate the 
codes through watch, fork, pull-request and so on.  

 Meanwhile, they can also establish their 
own social network by following other developers 
to achieve socialization and transparent 
programming [2]. According to a report released by 
GitHub in 2017, GitHub has more than 24 million 
users, hosts more than 67 million software and 
combined over one billion code requests.  

 Due to the rich resources on GitHub, 
developers and projects are not distributed evenly. 
It is very hard for developers to find the suitable 
project for themselves from 67 million code 
repositories while most of these projects are hosted 
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on GitHub with only a handful of developers 
involved.  

Consequently, personalized project 
recommendation for GitHub is urgently needed. 
Project recommendation is a kind of 
Recommendation Systems in Software Engineering 
(RSSE) [19]. It lies primarily in the models used, 
and often relies on the data mining and the 
predictive nature of its functionality.  

 In addition to these obvious features, 
RSSE often differs from other areas. The traditional 
recommendation system is user-oriented. Users 
usually create data items directly, for example, in 
the form of ratings. An important challenge with 
the traditional recommendation system is to infer 
and simulate user preferences and needs.  

 Instead, the main challenge in designing 
RSSE is to automatically interpret the highly 
technical data stored in the repository. Recently, 
researchers have already proposed several novel 
recommendation approaches for GitHub 
application [15], [27], [30]. However, existing 
approaches have some limitations.  

Literature Survey 

[1] P. Baldi, “Autoencoders, unsupervised 
learning, and deep architectures,” in 
Unsupervised and Transfer Learning - 
Workshop held at ICML 2011, Bellevue, WA, 
USA, 2012, pp. 37–50. 

Auto encoders play a fundamental role in 
unsupervised learning and in deep architectures for 
transfer learning and other tasks. In spite of their 
fundamental role, only linear autoencoders over the 
real numbers have been solved analytically. Here 
we present a general mathematical framework for 
the study of both linear and non-linear 
autoencoders.  

The framework allows one to derive an 
analytical treatment for the most non-linear 
autoencoder, the Boolean autoencoder. Learning in 
the Boolean autoencoder is equivalent to a 
clustering problem that can be solved in 
polynomial time when the number of clusters is 
small and becomes NP complete when the number 
of clusters is large.  

The framework sheds light on the different 
kinds of autoencoders, their learning complexity, 
their horizontal and vertical compos ability in deep 
architectures, their critical points, and their 
fundamental connections to clustering, Hebbian 
learning, and information theory. Autoencoders are 
simple learning circuits which aim to transform 
inputs into outputs with the least possible amount 
of distortion.  

While conceptually simple, they play an 
important role in machine learning. Autoencoders 
were first introduced in the 1980s by Hinton and 
the PDP group (Rumelhart et al., 1986) to address 
the problem of “back propagation without a 
teacher”, by using the input data as the teacher.  

[2] A. Begel, J. Bosch, and M. D. Storey, “Social 
networking meets software development: 
Perspectives from github, msdn, stack exchange, 
and top coder,” IEEE Software, vol. 30, no. 1, 
pp. 52–66, 2013. 

 One form of crowdsourcing is the 
competition, which poses an open call for 
competing solutions. Commercial systems such as 
Top Coder have begun to explore the application of 
competitions to software development, but have 
important limitations diminishing the potential 
benefits drawn from the crowd. In particular, they 
employ a model of independent work that ignores 
the opportunity for designs to arise from the ideas 
of multiple designers. 

 In this paper, we examine the potential for 
software design competitions to incorporate 
recombination, in which competing designers are 
given the designs of others and encouraged to use 
them to revise their own designs. To explore this, 
we conducted two software design competitions in 
which participants were asked to produce both an 
initial and a revised design, drawing on lessons 
learned from the crowd.  

[3] T. Chang, W. Hsiao, and W. Chang, “An 
ordinal regression model with SVD hebbian 
learning for collaborative recommendation,” J. 
Inf. Sci. Eng., vol. 30, no. 2, pp. 387–401, 2014. 

 The Internet is disseminating more and 
more information as it continues to grow. This 
large amount of information, however, can cause 
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an information overload problem for users. 
Recommender systems to help predict user 
preferences for new information can ease users’ 
mental loads. The model-based collaborative 
filtering (CF) approach and its variants for 
recommender systems have recently received 
considerable attention.  

 Nonetheless, two issues should be 
carefully considered in practical applications. First, 
the data reliability of the rating matrix can affect 
the prediction performance. Second, most current 
models view the measurement scale of output 
classes as nominal instead of ordinal ratings. This 
study proposes a model-based CF approach that 
deals with both issues.  

[4] X. Chen and J. C. Grundy, “Improving 
automated documentation to code traceability 
by combining retrieval techniques,” in 26th 
IEEE/ACM International Conference on 
Automated Software Engineering (ASE 2011), 
Lawrence, KS, USA, 2011, pp. 223–232. 

 Documentation written in natural language 
and source code are two of the major artifacts of a 
software system. Tracking a variety of traceability 
links between software documentation and source 
code assists software developers in comprehension, 
efficient development, and effective management 
of a system.  

 Automated traceability systems to date 
have been faced with a major open research 
challenge: how to extract these links with both high 
precision and high recall. In this paper we 
introduce an approach that combines three 
supporting techniques, Regular Expression, Key 
Phrases, and Clustering, with a Vector Space 
Model (VSM) to improve the performance of 
automated traceability between documents and 
source code.  

 This combination approach takes 
advantage of strengths of the three techniques to 
ameliorate limitations of VSM. Four case studies 
have been used to evaluate our combined technique 
approach. Experimental results indicate that our 
approach improves the performance of VSM, 
increases the precision of retrieved links, and 
recovers more true links than VSM alone. 

Proposed method 

To implement this project, we have designed 
following modules 

1) Upload Open-Source Dataset: using this 
module we will upload dataset to application 

2) Pre-process Code & Comments: using 
this module we will read all comments and values 
and then build a training vector and, in this module, 
we will replace all missing values with 0. Using 
this module, we will split dataset into train and test 
where application used 80% dataset size for 
training and 20% for testing 

3) Train KNN Algorithm: processed dataset 
will be input to KNN algorithm to train a model 
and then model will be applied on NEW test data to 
predict SOURCE CODE REPOSITORY name. 
20% test data will be applied on trained model and 
then calculate accuracy of correct prediction 

4) Comparison Graph: using this module 
we will plot accuracy, precision and recall graph 

5) Predict Open-Source Project: using this 
module user can enter any source code related 
query and then KNN will predict GITHUB 
REPOSITORY name of that query. 

Result 

 Now-a-days lots of developers are making 
many open source software project development 
and this developed projects modules can be useful 
in some other projects. So we can reuse such 
modules in new project without development from 
scratch. Many existing open source project 
communities exists but they won’t consider 
SOURCE CODE or dataset comments and this may 
not give accurate search result which may decrease 
prediction accuracy. 

To overcome from this problem we are using 
source code and dataset comments to train Machine 
Learning algorithm called KNN and after training 
this model can be used to predict repository for 
given search query. 

To implement this project we have use Open 
Source repository dataset from GITHUB which 
contains more than 16000 repositories with 
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comments and below screen showing dataset 
details 

 

In above dataset screen first 5 lines contains 
WORDS from source acode and dataset 
COMMENTS and in all rows first column contains 
names of GITHUB user repository and other 
column contains values as 0 and greater than 0. If 
repository contains comment words then value will 
be >0 else 0. 

You can see dataset details from below link 

https://data.world/vmarkovtsev/github-source-
code-names/workspace/file?filename=artm.csv 

By using above dataset we will train KNN 
algorithm and then user can search such repository 
by entering any query. 

To implement this project we have designed 
following modules 

1) Upload Open Source Dataset: using this 
module we will upload dataset to application 
2) Pre-process Code & Comments: using this 
module we will read all comments and values and 
then build a training vector and in this module we 
will replace all missing values with 0. Using this 
module we will split dataset into train and test 
where application used 80% dataset size for 
training and 20% for testing 
3) Train KNN Algorithm: processed dataset 
will be input to KNN algorithm to train a model 
and then model will be applied on NEW test data to 
predict SOURCE CODE REPOSITORY name. 
20% test data will be applied on trained model and 
then calculate accuracy of correct prediction 
4) Comparison Graph: using this module we 
will plot accuracy, precision and recall graph 
5) Predict Open Source Project: using this 
module user can enter any source code related 
query and then KNN will predict GITHUB 
REPOSITORY name of that query. 

SCREEN SHOTS 

To run project double click on ‘run.bat’ file to get 
below screen 

 

In above screen click on ‘Upload Open Source 
Dataset’ button to upload dataset and get below 
screen 

 

In above screen selecting and uploading ‘source 
code repository’ file and then click on ‘Open’ 
button to load dataset and get below screen 

 

In above screen dataset loaded and we can see 
dataset contains both numeric and non-numeric 
data but machine learning algorithms only take 
integer values so click on ‘Pre-process Code & 
Comments’ button to replace missing values and 
then convert dataset into numeric vector and get 
below output 
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In above screen we can see entire dataset converted 
to numeric vector and we can see dataset contains 
16537 repository and comments size is 256 and 
then application split dataset into train and test 
where 13229 records used for training and 3308 
records used for testing and then will get prediction 
accuracy of test data. 

 

In above screen with KNN we got all metrics 
values as 100% and now model is ready and now 
click on ‘Comparison Graph’ button to get below 
graph 

 

In above graph x-axis represents metrics as 
accuracy, precision etc and y-axis represents metric 
values and now close above graph and then enter 
any query and then press ‘Predict Open Source 
Project’ button to get below output 

 

In above screen in small TEXT FIELD I entered 
query ‘date and time picker’ and then press button 
to get all those repository which implements date 
and time picker module 

 

In above screen display list of repository user and 
the matching similarity for example ‘forcurr’ is the  
repository name and 0.22 is the matching score and 
now in GITHUB we search for that repository and 
then check weather its description contains any 
‘time or date details’. In below screen I am 
searching for repository in GITHUB 

 

In above screen in TOP left small text field I 
entered repository name as ‘forcurr’ and below is 
the search output 
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In above screen click on first link called ‘for 
Currency’ to get below screen 

 

In above screen in comments or description we can 
see word ‘time’ found. Similarly you can search 
any comment given in dataset first row to 
repository names which contains implementation 
code 

 

In above screen I entered query as ‘html’ and get 
all repositories which done HTML projects. 

Similarly user can enter any query and then get 
repository code name as recommendation. 

Note: Entered search word can be found in any 
source file of Repository as comments or 
description 
Conclusion: 

The paper presents FunkR-pDAE, a 
personalized project recommendation approach 
based on an existing deep learning model: Deep 
Auto-Encoders. The experimental results show that 
FunkR-pDAE achieves the desired 
recommendation effect compare with other 
approaches. For future work, we plan to study the 
dataset description and source code comment 
documents, which can mine more relations among 
developers and projects. Furthermore, we plan to 
generalize our model to recommend other open 
source communities.  
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