
International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

340
ISSN: 2456-4265
IJMEC 2025

FunkR-pDAE: Personalized Project Recommendation Using
Deep Learning

Abstract

 Open source communities are the largest
coding platforms that offer software developers
an opportunity to engage in social activities
relating to the software development. The
developers can store and share their codes or
projects with wider community of people using
the repositories. Enabling its users to find relevant
projects is the prime feature of the open source
communities. Finding a relevant project among
vast open source projects is a difficult task.
Recommending a suitable project for developers
can save their time and energy. Pengcheng Zhang
et.al. Used FunkR-pDAE, a personalized project
recommendation approach based on Deep Auto-
Encoders, deep learning model. This approach has
clear limitations, such as ignoring the dataset
description and source code comment documents.

 So, proposing a method for
recommending a project in open source
communities that takes into account the dataset
description and source code comment documents,
allowing for the discovery of more relationships
between developers and projects this might in turn
lead to increased precision rate. And also in the
proposed work it is planned to generalize the
model to recommend other open source
communities i.e., github, kaggle and source forge
along with integrating the dataset description and
source code comment documents in order to mine
more relations among the developers and
projects.

Keywords - Open Source; project
recommendation; deep auto-encoder; GitHub.

Introduction

Open Source Software (OSS) development
paradigm is defined as collaborative work between

multiple developers. Through online development,
geographically dispersed developers can work
together to maintain or improve OSS projects.
Through this development paradigm, the same

software project includes participants from
different areas of the world.

 OOS also allows different developers to
modify and improve source codes according to
their own needs. In addition, unlike traditional
organizations, OOS has a composite structure of
social-technical processes and does not need to
have a specific organization [9].

It usually has a lively software process,
constantly changing requirements and fast
development phases. For traditional software
development, if the software project team is large,
the project progress is often very slow. OOS, on the
other hand, is developed in an environment where
developers can communicate and share code via the
Internet rather than in the same geographical place.

 Developers gather on social-coding sites
in the same virtual environment, such as GitHub
and Source forge, for mutual assistance and sharing
of experiences. Developers can manipulate the
codes through watch, fork, pull-request and so on.

 Meanwhile, they can also establish their
own social network by following other developers
to achieve socialization and transparent
programming [2]. According to a report released by
GitHub in 2017, GitHub has more than 24 million
users, hosts more than 67 million software and
combined over one billion code requests.

 Due to the rich resources on GitHub,
developers and projects are not distributed evenly.
It is very hard for developers to find the suitable
project for themselves from 67 million code
repositories while most of these projects are hosted

Lolla Bhavani
PG scholar, Department of MCA, CDNR collage, Bhimavaram, Andhra Pradesh.

K.Venkatesh
(Assistant Professor), Master of Computer Applications, DNR collage, Bhimavaram, Andhra Pradesh.

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

341
ISSN: 2456-4265
IJMEC 2025

on GitHub with only a handful of developers
involved.

Consequently, personalized project
recommendation for GitHub is urgently needed.
Project recommendation is a kind of
Recommendation Systems in Software Engineering
(RSSE) [19]. It lies primarily in the models used,
and often relies on the data mining and the
predictive nature of its functionality.

 In addition to these obvious features,
RSSE often differs from other areas. The traditional
recommendation system is user-oriented. Users
usually create data items directly, for example, in
the form of ratings. An important challenge with
the traditional recommendation system is to infer
and simulate user preferences and needs.

 Instead, the main challenge in designing
RSSE is to automatically interpret the highly
technical data stored in the repository. Recently,
researchers have already proposed several novel
recommendation approaches for GitHub
application [15], [27], [30]. However, existing
approaches have some limitations.

Literature Survey

[1] P. Baldi, “Autoencoders, unsupervised
learning, and deep architectures,” in
Unsupervised and Transfer Learning -
Workshop held at ICML 2011, Bellevue, WA,
USA, 2012, pp. 37–50.

Auto encoders play a fundamental role in
unsupervised learning and in deep architectures for
transfer learning and other tasks. In spite of their
fundamental role, only linear autoencoders over the
real numbers have been solved analytically. Here
we present a general mathematical framework for
the study of both linear and non-linear
autoencoders.

The framework allows one to derive an
analytical treatment for the most non-linear
autoencoder, the Boolean autoencoder. Learning in
the Boolean autoencoder is equivalent to a
clustering problem that can be solved in
polynomial time when the number of clusters is
small and becomes NP complete when the number
of clusters is large.

The framework sheds light on the different
kinds of autoencoders, their learning complexity,
their horizontal and vertical compos ability in deep
architectures, their critical points, and their
fundamental connections to clustering, Hebbian
learning, and information theory. Autoencoders are
simple learning circuits which aim to transform
inputs into outputs with the least possible amount
of distortion.

While conceptually simple, they play an
important role in machine learning. Autoencoders
were first introduced in the 1980s by Hinton and
the PDP group (Rumelhart et al., 1986) to address
the problem of “back propagation without a
teacher”, by using the input data as the teacher.

[2] A. Begel, J. Bosch, and M. D. Storey, “Social
networking meets software development:
Perspectives from github, msdn, stack exchange,
and top coder,” IEEE Software, vol. 30, no. 1,
pp. 52–66, 2013.

 One form of crowdsourcing is the
competition, which poses an open call for
competing solutions. Commercial systems such as
Top Coder have begun to explore the application of
competitions to software development, but have
important limitations diminishing the potential
benefits drawn from the crowd. In particular, they
employ a model of independent work that ignores
the opportunity for designs to arise from the ideas
of multiple designers.

 In this paper, we examine the potential for
software design competitions to incorporate
recombination, in which competing designers are
given the designs of others and encouraged to use
them to revise their own designs. To explore this,
we conducted two software design competitions in
which participants were asked to produce both an
initial and a revised design, drawing on lessons
learned from the crowd.

[3] T. Chang, W. Hsiao, and W. Chang, “An
ordinal regression model with SVD hebbian
learning for collaborative recommendation,” J.
Inf. Sci. Eng., vol. 30, no. 2, pp. 387–401, 2014.

 The Internet is disseminating more and
more information as it continues to grow. This
large amount of information, however, can cause

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

342
ISSN: 2456-4265
IJMEC 2025

an information overload problem for users.
Recommender systems to help predict user
preferences for new information can ease users’
mental loads. The model-based collaborative
filtering (CF) approach and its variants for
recommender systems have recently received
considerable attention.

 Nonetheless, two issues should be
carefully considered in practical applications. First,
the data reliability of the rating matrix can affect
the prediction performance. Second, most current
models view the measurement scale of output
classes as nominal instead of ordinal ratings. This
study proposes a model-based CF approach that
deals with both issues.

[4] X. Chen and J. C. Grundy, “Improving
automated documentation to code traceability
by combining retrieval techniques,” in 26th
IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011),
Lawrence, KS, USA, 2011, pp. 223–232.

 Documentation written in natural language
and source code are two of the major artifacts of a
software system. Tracking a variety of traceability
links between software documentation and source
code assists software developers in comprehension,
efficient development, and effective management
of a system.

 Automated traceability systems to date
have been faced with a major open research
challenge: how to extract these links with both high
precision and high recall. In this paper we
introduce an approach that combines three
supporting techniques, Regular Expression, Key
Phrases, and Clustering, with a Vector Space
Model (VSM) to improve the performance of
automated traceability between documents and
source code.

 This combination approach takes
advantage of strengths of the three techniques to
ameliorate limitations of VSM. Four case studies
have been used to evaluate our combined technique
approach. Experimental results indicate that our
approach improves the performance of VSM,
increases the precision of retrieved links, and
recovers more true links than VSM alone.

Proposed method

To implement this project, we have designed
following modules

1) Upload Open-Source Dataset: using this
module we will upload dataset to application

2) Pre-process Code & Comments: using
this module we will read all comments and values
and then build a training vector and, in this module,
we will replace all missing values with 0. Using
this module, we will split dataset into train and test
where application used 80% dataset size for
training and 20% for testing

3) Train KNN Algorithm: processed dataset
will be input to KNN algorithm to train a model
and then model will be applied on NEW test data to
predict SOURCE CODE REPOSITORY name.
20% test data will be applied on trained model and
then calculate accuracy of correct prediction

4) Comparison Graph: using this module
we will plot accuracy, precision and recall graph

5) Predict Open-Source Project: using this
module user can enter any source code related
query and then KNN will predict GITHUB
REPOSITORY name of that query.

Result

 Now-a-days lots of developers are making
many open source software project development
and this developed projects modules can be useful
in some other projects. So we can reuse such
modules in new project without development from
scratch. Many existing open source project
communities exists but they won’t consider
SOURCE CODE or dataset comments and this may
not give accurate search result which may decrease
prediction accuracy.

To overcome from this problem we are using
source code and dataset comments to train Machine
Learning algorithm called KNN and after training
this model can be used to predict repository for
given search query.

To implement this project we have use Open
Source repository dataset from GITHUB which
contains more than 16000 repositories with

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

343
ISSN: 2456-4265
IJMEC 2025

comments and below screen showing dataset
details

In above dataset screen first 5 lines contains
WORDS from source acode and dataset
COMMENTS and in all rows first column contains
names of GITHUB user repository and other
column contains values as 0 and greater than 0. If
repository contains comment words then value will
be >0 else 0.

You can see dataset details from below link

https://data.world/vmarkovtsev/github-source-
code-names/workspace/file?filename=artm.csv

By using above dataset we will train KNN
algorithm and then user can search such repository
by entering any query.

To implement this project we have designed
following modules

1) Upload Open Source Dataset: using this
module we will upload dataset to application
2) Pre-process Code & Comments: using this
module we will read all comments and values and
then build a training vector and in this module we
will replace all missing values with 0. Using this
module we will split dataset into train and test
where application used 80% dataset size for
training and 20% for testing
3) Train KNN Algorithm: processed dataset
will be input to KNN algorithm to train a model
and then model will be applied on NEW test data to
predict SOURCE CODE REPOSITORY name.
20% test data will be applied on trained model and
then calculate accuracy of correct prediction
4) Comparison Graph: using this module we
will plot accuracy, precision and recall graph
5) Predict Open Source Project: using this
module user can enter any source code related
query and then KNN will predict GITHUB
REPOSITORY name of that query.

SCREEN SHOTS

To run project double click on ‘run.bat’ file to get
below screen

In above screen click on ‘Upload Open Source
Dataset’ button to upload dataset and get below
screen

In above screen selecting and uploading ‘source
code repository’ file and then click on ‘Open’
button to load dataset and get below screen

In above screen dataset loaded and we can see
dataset contains both numeric and non-numeric
data but machine learning algorithms only take
integer values so click on ‘Pre-process Code &
Comments’ button to replace missing values and
then convert dataset into numeric vector and get
below output

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

344
ISSN: 2456-4265
IJMEC 2025

In above screen we can see entire dataset converted
to numeric vector and we can see dataset contains
16537 repository and comments size is 256 and
then application split dataset into train and test
where 13229 records used for training and 3308
records used for testing and then will get prediction
accuracy of test data.

In above screen with KNN we got all metrics
values as 100% and now model is ready and now
click on ‘Comparison Graph’ button to get below
graph

In above graph x-axis represents metrics as
accuracy, precision etc and y-axis represents metric
values and now close above graph and then enter
any query and then press ‘Predict Open Source
Project’ button to get below output

In above screen in small TEXT FIELD I entered
query ‘date and time picker’ and then press button
to get all those repository which implements date
and time picker module

In above screen display list of repository user and
the matching similarity for example ‘forcurr’ is the
repository name and 0.22 is the matching score and
now in GITHUB we search for that repository and
then check weather its description contains any
‘time or date details’. In below screen I am
searching for repository in GITHUB

In above screen in TOP left small text field I
entered repository name as ‘forcurr’ and below is
the search output

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

345
ISSN: 2456-4265
IJMEC 2025

In above screen click on first link called ‘for
Currency’ to get below screen

In above screen in comments or description we can
see word ‘time’ found. Similarly you can search
any comment given in dataset first row to
repository names which contains implementation
code

In above screen I entered query as ‘html’ and get
all repositories which done HTML projects.

Similarly user can enter any query and then get
repository code name as recommendation.

Note: Entered search word can be found in any
source file of Repository as comments or
description
Conclusion:

The paper presents FunkR-pDAE, a
personalized project recommendation approach
based on an existing deep learning model: Deep
Auto-Encoders. The experimental results show that
FunkR-pDAE achieves the desired
recommendation effect compare with other
approaches. For future work, we plan to study the
dataset description and source code comment
documents, which can mine more relations among
developers and projects. Furthermore, we plan to
generalize our model to recommend other open
source communities.

 REFERENCES

[1] P. Baldi, “Autoencoders, unsupervised learning,
and deep architectures,” in Unsupervised and
Transfer Learning - Workshop held at ICML 2011,
Bellevue, WA, USA, 2012, pp. 37–50.

[2] A. Begel, J. Bosch, and M. D. Storey, “Social
networking meets software development:
Perspectives from github, msdn, stack exchange,
and topcoder,” IEEE Software, vol. 30, no. 1, pp.
52–66, 2013.

[3] T. Chang, W. Hsiao, and W. Chang, “An
ordinal regression model with SVD hebbian
learning for collaborative recommendation,” J. Inf.
Sci. Eng., vol. 30, no. 2, pp. 387–401, 2014.

 [4] X. Chen and J. C. Grundy, “Improving
automated documentation to code traceability by
combining retrieval techniques,” in 26th
IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011),
Lawrence, KS, USA, 2011, pp. 223–232.

[5] H. Dai, Y. Wang, R. Trivedi, and L. Song,
“Recurrent Convolutionary latent feature processes
for continuous-time recommendation,” in
Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems, Boston, MA, USA,
2016, pp. 29–34.

[6] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and
F. Zhang, “A hybrid collaborative filtering model
with deep structure for recommender systems,” in
Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San
Francisco, CA, USA., 2017, pp. 1309–1315.

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

346
ISSN: 2456-4265
IJMEC 2025

 [7] G. Gousios, “The ghtorent dataset and tool
suite,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR
’13, San Francisco, CA, USA, 2013, pp. 233–236.

[8] G. E. Hinton, “Training products of experts by
minimizing contrastive divergence,” Neural
Computation, vol. 14, no. 8, pp. 1771– 1800, 2002.

 [9] Y. Hu, S. Wang, Y. Ren, and K. R. Choo,
“User influence analysis for github developer social
networks,” Expert Syst. Appl., vol. 108, pp. 108–
118, 2018.

[10] O. Irsoy and E. Alpaydin, “Unsupervised
feature extraction with autoencoder trees,”
Neurocomputing, vol. 258, pp. 63–73, 2017.

[11] G. Jeong, S. Kim, and T. Zimmermann,
“Improving bug triage with bug tossing graphs,” in
Proceedings of the 7th joint meeting of the
European software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, Amsterdam, The
Netherlands, 2009, pp. 111–120.

[12] Y. Kawamoto, H. Takagi, H. Nishiyama, and
N. Kato, “Efficient resource allocation utilizing q-
learning in multiple ua communications,” IEEE
Transactions on Network Science and Engineering,
2018. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TNSE.2
018.2842246

[13] O. Kuchaiev and B. Ginsburg, “Training deep
autoencoders for collaborative filtering,” CoRR,
vol. abs/1708.01715, 2017. [Online]. Available:
http://arxiv.org/abs/1708.01715

 [14] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O.
Akashi, T. Inoue, and K. Mizutani, “Routing or
computing? the paradigm shift towards intelligent
computer network packet transmission based on
deep learning,” IEEE Trans. Computers, vol. 66,
no. 11, pp. 1946–1960, 2017.

[15] T. Matek and S. T. Zebec, “Github open
source project recommendation system,” CoRR,
vol. abs/1602.02594, 2016.

 [16] A. T. Nguyen, M. Hilton, M. Codoban, H. A.
Nguyen, L. Mast, E. Rademacher, T. N. Nguyen,
and D. Dig, “API code recommendation using

statistical learning from fine-grained changes,” in
Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of
Software Engineering, Seattle, WA, USA, 2016,
pp. 511–522.

 [17] D. Ramachandram and G. W. Taylor, “Deep
multimodal learning: A survey on recent advances
and trends,” IEEE Signal Process. Mag., vol. 34,
no. 6, pp. 96–108, 2017.

[18] P. C. Rigby and M. P. Robillard, “Discovering
essential code elements in informal
documentation,” in 35th International Conference
on Software Engineering, ICSE ’13, San Francisco,
CA, USA, 2013, pp. 832–841.

[19] M. P. Robillard, R. J. Walker, and T.
Zimmermann, “Recommendation systems for
software engineering,” IEEE Software, vol. 27, no.
4, pp. 80–86, 2010.

[20] R. Salakhutdinov, A. Mnih, and G. E. Hinton,
“Restricted boltzmann machines for collaborative
filtering,” in Machine Learning, Proceedings of the
Twenty-Fourth International Conference (ICML
2007), Corvallis, Oregon, USA, 2007, pp. 791–798.

