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ABSTRACT 

Given any graph G, its square graph G2 has the same 

vertex set V (G), with two vertices adjacent in G2 

whenever they are at distance 1 or 2 in G. A set S ⊆ V (G) 

is a 2-distance independent set of a graph G if the distance 

between every two vertices of S is greater than 2. The 2-

distance independence number α2(G) of G is the 

maximum cardinality over all 2-distance independent 

sets in G. In this paper, we establish the 2-distance 

independence number and 2-distance chromatic number 

for C3>C6>Cm, Cn>P3>P3 and C4>C7>Cn where m ≡ 0 

(mod 3) and n, m ⩾ 3. 

 

Introduction 

Let G = (V, E) be a finite and simple graph. For any 

graph G, we denote the vertex-set and the edge-set of 

G by V (G) and E(G), respectively. A proper vertex k-

coloring of a graph G is a mapping c : V (G) → {1, . . . , 

k}, with the property that c(u) ≠ c(v) whenever uv ∈ E(G). 

The smallest k for which there exists a k-coloring of G, 

called the chromatic number of G, is denoted by χ(G), see 

[1, 7] for more details. The square of a graph G, 

denoted by G2 , is a graph with V (G) = V (G2 ), in 

which two vertices are adjacent if their distance in G is 

at most two. A 2- distance coloring of G is a vertex 

coloring of G such that any two distinct vertices at 

distance less than or equal to 2 are assigned 

different colors. The 2-distance chromatic number of a 

graph G is the minimum number of colors necessary to 

have a 2-distance coloring of G, which is denoted by 

χ2(G). Hence χ2(G) is equal to χ(G2 ). The 2-distance 

coloring of graphs was introduced by Wegner in [16]. 

The problem of determining the chromatic number of the 

square of particular graphs has attracted a lot of 

attention, with a particular focus on the square of planar 

graphs (see, e.g., [4, 5, 8, 10, 15]). The Cartesian 

product of graphs G1, G2, . . . , Gk is the graph 

G1,G2, · · ,Gk = k i=1Gi with vertex set {(x1, x2, . . . , 

xk)|xi ∈ V (Gi)} and for which two vertices (x1, x2, . . . , 

xk) and (y1, y2, . . . , yk) are adjacent whenever xiyi ∈ 

E(Gi) for exactly one index 1⩾ i ⩾ k and xj = yj for 

each index1 ⩾ j ⩾ k that i j. The subgraph of 

G>H induced by {u}×V (H) is isomorphic to H. It is 

called an H-fiber and is denoted by Hu . A set S ⊆ V (G) 
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is a k-distance independent set of a graph G if the distance 

between every two vertices of S is greater than k. The k-

distance independence number αk(G) of G is the 

maximum cardinality over all k-distance independent 

sets in G. For k = 1, we use αk(G) as α(G). There are 

many results for the chromatic number of the square of 

the Cartesian product of tree, paths, and cycles (see, 

e.g., [2, 3, 6, 9, 11, 13]). Shao et al. [12] established that 

the 2-distance chromatic number of G equals ⌈|V (G)| 

α(G2) ⌉ for G = Cm>Cn>Ck where k ⩾ 3 and (m, n) 

∈{(3, 3),(3, 4),(3, 5),(4, 4)} or k, m, and n are all 

multiples of seven. Moreover, it is shown that the 2-

distance chromatic number of the three-dimensional 

square lattice is equal to seven and proved the following 

theorems. 

Theorem 1.1 [12] If j, k, l ⩾ 1, then 

α2(C7j>C7k>C7l) = 

49jkl. 

Theorem 1.2 [12] If j, k, l ⩾ 1, then 

χ2(C7j>C7k>C7l) = 

7. 

In this paper, as an extension of Theorems 1.1 

and 1.2, we establish the 2- distance independence 

number and 2-distance chromatic number for 

C3>C6>Cm, Cn>P3>P3 and C4>C7>Cn where m ≡ 0 

(mod 3) and n, m ⩾ 3. 

1. Main results 

The aim of this section is to find lower and 

upper bounds and exact values for the spcial cases 2-

distance chromatic number of the families G = 

{C3>C6>Cm, Cn>P3>P3, C4>C7>Cn where m ≡ 0 

(mod 3) and n, m ⩾ 3.} The following two lemmas are 

essential for proving the main theorems. Let G be a graph 

and f be a proper 2-coloring of G. Since every color class 

under f is a 2-independent set, we have the following 

lemma, 

 

Lemma 2.1 If G is a graph, then χ2(G) ⩾ ⌈ |V (G)| α(G2). 

Let H be a graph, m ⩾ 3 and f denote a proper t-

coloring of (Cm>H) 2 . We denote by fi,p, 0 ⩾ i ⩾ m − 

p and 1 ⩾ p ⩾ m, the restriction of f to V (Hi ), . . . , V 

(Hi+p−1 ). The following lemma is a natural 

generalization of [11,Lemma 1]. 

Lemma 2.2 Let m, n, p ⩾ 3, s ⩾ 1 and let f be a proper 

t- coloring of (Cm>H) 2 . If f0,p is a proper t-coloring of 

(Cp>H) 2 , then χ((Cm+(s−1)p>H) 2 ) ⩾ t. 

Proof 

Let f ′ : V (Cm+(s−1)p>H) −→ {1, 2, ..., k} be a function 

and f 

′ i the restriction of f ′ to V (Hi ). We define the function 

f ′ by 
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Consider  first the vertex (j, m). In this case vertex (j, m) 

is adjacent to {(j− l, m − 1); l ∈ {0, 1, −1}} and (j, m − 

2) in the subgraph induced by V (H0 ), ..., V (Hm−1 ), 

as illustrated in Figure 1. By definition f ′ i we have f ′ 

(j, m) = f(j, 0). Since f is a proper t-coloring of (Cm>H) 

2 and (j, 0) is adjacent to {(j − l, m − 1); l ∈ 0, 1, −1} 

and (j, m − 2) in (Cn>H) 2 , this case is settled. 

Similarly for any two adjacent vertices (x, y) and (x ′ 

, y′ ) {(j, m + 1),(j, m + sp),(j, m + sp + 

1), s1} of V(Cm+(s−1)p>H) 2 , we have f ′ (x, y)f ′ 

(x ′ , y′ ) and can be proved analogously. Therefore the 

proof is completed. 

          

 Before presenting our main results we need to 

obtain the 2-distance independent number of families 

G. We first mention two lemmas that need for proof of 

next lemmas. Let H be a graph. If I is a d-distance 

independent set of Ck>H, then, for i = 0, . . . , k − 1, we 

set I i:= I ∩ V (Hi ), that is, I i is the subset of I induced by 

the vertices of H
i 

. 

 

 One naturally asks whether an analogous statement 

holds for list coloring of graphs. Since the product of 

K1,2 and K1,4 contains the complete bipartite graph 

K2,4 and Xl(K2,4)= 3, the statement can hold with the 

maximum of the list chromatic numbers. Hence, one can 

at least ask whether the list chromatic number of G × H 

can be bounded by max{Xl(G), Xl(H )}+C for a 

constant C (or even for C=1).We show that even such a 

statement is false by constructing graphs G with Xl(G × 

G) = 2Xl(G) − 1. Another graph parameter closely 

related to the chromatic number and the list chromatic 

number is the coloring number. The coloring number 

col(G) of a graph G is the smallest integer d for which 

there exists an ordering v1,...,vn of the vertices of G 

such that each vertex vi has at most d − 1 neighbors 

among the vertices v1,...,vi−1. A graph G with col(G) = 

d is also called (d − 1)-degenerate. Clearly, (G)col(G) 

and l(G)col(G). Our main result is the following upper 

bound on the list chromatic number of the Cartesian 

product of two graphs G and H: 

  

 

 

The bound can be generalized to products of 

more graphs (see Corollary 2). In Section 3, we show 

that this bound cannot be improved. In particular, for 

every pair of positive integers k and , there exist a graph 
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G with l(G) = col(G) = k and a graph H with Xl(H ) = 

col(H ) =  such that Xl(G × H ) = k +  − 1. 

Upper bound 

We start with establishing our upper bound on the list 

chromatic number of the Cartesian product of graphs. 

 

Theorem 1 

 Let G and H be two graphs. The list chromatic number 

l(G × H ) of the Cartesian product G × H can be 

bounded as follows: 

 

   

Proof 

 By symmetry, it is enough to prove that

 

be the vertices of H ordered in such a way that each 

vertex vi has at most col(H ) − 1 neighbors among the 

vertices v1,...,vi−1. Let Vi be the vertices of G × H that 

are contained in the copy of G corresponding to a vertex 

vi. Fix a list assignment L for G × H such that |L(v)| = 

l(G) + col(H ) − 1 for every vertex v ∈ V (G × H ). We 

construct a proper coloring c of G × H with c(v) ∈ L(v) 

for every v ∈ V (G × H ). First, color the subgraph of G 

× H induced by V1. Since this subgraph is isomorphic 

to G and each vertex has a list of size at least l(G), such 

a coloring exists. Assume that we have already 

constructed a proper coloring c of the subgraph of G × 

H induced by V1 ∪···∪ Vi−1. We now extend the 

coloring c to the vertices of Vi. First, remove from the 

list L(v) of each vertex v of Vi the colors of its 

neighbors among the vertices contained in V1 

∪···∪Vi−1. Since the vertex v has at most col(H )−1 

such neighbors (one neighbor for each neighbor of vi 

that precedes vi in the ordering of the vertices of H), the 

new list L (v) has size at least l(G). Since the list 

chromatic number of G is l(G), the copy of G induced in 

G × H by the vertices of Vican be colored from the new 

lists. In this way, the coloring is eventually extended to 

the entire graph G × H. 

 

An immediate corollary of Theorem 1 is the following 

upper bound on the list chromatic number of the 

Cartesian product of several graphs: 

Corollary 2. If G1,...,Gk are graphs, then the following 

holds: 

 

   

 

2. Lower bound 

 In this section, we show that there exists a graph 

G with col(G) = l(G) such that l(G × G) = col(G) + l(G) 

− 1. Let us start with the following lemma: 

Lemma 3 

 Let G be a graph with n vertices. The list chromatic 

number of the product of G and Kk,t is l(G) + k where t 

= (k + l(G) − 1) kn 
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Proof 

Let H be the Cartesian product of G and Kk,t . 

Fix a list assignment L that assigns each vertex of G a 

set of l(G) − 1 colors such that the vertices of G cannot 

be properly colored from their lists. Let L0 be the union 

of all the lists L(v) and let X be the smaller part of Kk,t 

and Y the larger one. Finally, let XH be the vertices of 

H that are contained in the copies of G corresponding to 

the vertices of X. Note that |XH | = kn.  

We now construct a list assignment LH from 

which H cannot be colored. The lists LH (v, x), v ∈ V 

(G) and x ∈ X, i.e., the lists of the vertices of XH , are 

disjoint sets of k + l(G) − 1 that are distinct from the 

colors of L0. Next, associate with each of the (at most t 

= (k + l(G) − 1) kn) colorings c of the vertices of XH a 

vertex yc of Y. The list LH (v, yc) is the union of the list 

L(v) and the set of k colors assigned to the k neighbors 

of the vertex (v, yc) in XH . Observe that the size of the 

list LH (w) is k +l(G)−1 for every vertex w ∈ V (H ). 

We show that H cannot be colored from the lists LH .  

Assume that there exists a coloring cH of H 

such that cH (w) ∈ LH (w)for every w ∈ V (H ). Let c 

be the restriction of cH to the vertices of XH . Observe 

now that cH (v, yc) ∈ L(v) for every vertex v: indeed, 

cH (v, yc) cannot be any of the k colors assigned to the 

neighbors of (v, yc) in X0. Since these k colors are 

precisely the k colors of LH (v, yc)\L0(v), it follows that 

cH (v, yc) ∈ L(v). Hence, the coloring cH restricted to 

the copy of G corresponding to the vertex yc in H is a 

proper coloring of G from the lists L. This contradicts 

the choice of the list assignment L.  

Since H cannot be colored from the lists LH , 

l(H ) >l(G)+k−1. Since the graph Kk,t is k-degenerate, 

its coloring number is k + 1 and l(H )l(G) + k by 

Theorem 1. 

 Hence, l(H ) = l(G) + k.  

H = K ,t with s = (k +  ) k ( + ) and t = (k +  )  (k +kk ) . 

4. Open problems We have initiated study of the list 

chromatic number of the Cartesian product of two 

graphs. Our original motivation was the question 

whether the list chromatic number l(G × H ) of two 

graphs G and H could be bounded by max{l(G), l(H )} 

as in the case of usual colorings. We have shown that 

this does not hold for list colorings, in particular, l(G × 

G) = 2l(G) − 1 for the graph G constructed in Theorem 

4. However, l(G × H ) can be bounded by a function of 

l(G) and l(H ): by the result of Alon [2,1], the coloring 

number of G does not exceed 2O(l(G)). Similarly, col(H 

)2O(l(H )). Hence, col(G × H ) min{l(G) + 2O(l(H )), 

l(H ) + 2O(l(G))}. However, we suspect that a much 

better upper bound can be established: 

 

CONCLUSION 

There exists a constant A such that the following holds 

for every pair of graphs G and H: 
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Also note that if the (am, bm)-conjecture of Erd ˝os et 

al. [3] is true, then l(G × H )l(G)l(H ). Another problem 

is to bound the list chromatic number of G × H in terms 

of the maximum degrees of G and H. If G and H are 

complete graphs of orders a and b, then G × H is 

isomorphic to the line graph of the complete bipartite 

graph with parts of sizes a and b. Kahn [4] showed that 

the list chromatic number of the line-graph of a graph 

with maximum degree does not exceed + o(). In 

particular, l(Ka × Kb) = max{a, b} + o(a + b). This 

leads us to the following problem: Conjecture 7. Let G 

and H be two graphs with maximum degree at most . 

The list chromatic number of G × H does not exceed + 

o(). 
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