
International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

436
ISSN: 2456-4265
IJMEC 2025

Prediction of SQL Injection Attacks in Web Applications

Abstract

In today’s present time, SQL injection has become a
significant security threat over the web for diverse
dynamic web applications and websites. SQL
Injection may be a sort of associate injection attack
that produces it doable to execute malicious SQL
statements into an online application consisting of
SQL information. Attackers use these SQL Injection
Queries or Statements specified if an Internet site or
an application hosted on web contain SQL
vulnerabilities to bypass application security
measures. The Attacker will even go around
authentication associated with authorization of an
online page or Internet application and might bypass
these methods and retrieve the content of the whole
SQL information of an online application. The
purpose of the proposed system is to predict the
occurrence of a SQL injection attack on a particular
server where an application is deployed from a given
supply at a particular point in time. This predictive
experiment is managed using the JMeter tool. From
network logs, you can now pre-measure, exclude
choices, analyze, and feed machine learning models
to predict SQLIA.

Introduction

Permission to make digital or hard copies of
all or part of this work for personal or classroom use
is granted without fee provided that copies are not
made or distributed for profit or commercial
advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components
of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission

and/or a fee. exploited for nefarious purposes when
discovered by malicious attackers. In some cases, an
attacker can crash an important running program,
leading to a DoS (denial of service). In other cases,
the attacker can escalate his privileges or even
achieve full control over the machine. Over the years,
numerous countermeasures have been implemented
in both compilers and operating system to minimize
the damage that malicious hackers can cause via
buffer overflow attacks.

For example, DEP (data execution
prevention) makes the call stack non-executable,
preventing hackers from being able to execute their
payloads, and ASLR (address space layout
randomization), randomizes the address space layout
of the process, making it more difficult for hackers to
insert correct addresses into their payloads [17].
However, these techniques have proven to be little
more than a nuisance to determined adversaries. Thus
far, the only way to prevent hackers from
successfully completing an attack is to write secure
code. However, complex programs, particularly those
written in a relatively low-level language like C, are
difficult to scan for bugs, even when using both
manual and automated techniques.

Microsoft spends roughly 100 machine
years per year using automated techniques to detect
bugs in their code [7], but their products often
contain numerous bugs, because complex pointer
arithmetic can sometimes be difficult to follow,
especially when the developers are under constant
time pressure to meet their deadlines. Since attackers
use software to uncover security holes in programs, it
is important for developers and security professionals
to keep up with the latest automated vulnerability
detection technologies. The contribution of this paper
is a methodology for analyzing features from C

Mote Lokeswari
PG scholar, Department of MCA, CDNR collage, Bhimavaram, Andhra Pradesh.

A.Naga Raju
 (Assistant Professor), Master of Computer Applications, DNR collage, Bhimavaram, Andhra Pradesh.

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

437
ISSN: 2456-4265
IJMEC 2025

source code to classify functions as vulnerable or
non-vulnerable. After finding 100 programs on
GitHub, we parsed out all functions from these
programs. We then extracted trivial features (function
length, nesting depth, string entropy, etc) and non-
trivial features (n-grams and suffix trees) from these
functions. The statistics for these features were
arranged in a table, which was split into training data
and test data. Several different classifiers, including
Naive Bayes, k nearest neighbors, k means, neural
network, support vector machine, decision tree, and
random forest, were used to classify the test samples.
The trivial features produced the best classification
result, with an accuracy of 75%, while the best n-
grams result was 69% and the best suffix trees result
was 60%. These results are discussed in more detail
in Section 5. Section 2 discusses some background
concepts, Section 3 discusses previous work, Section
4 outlines the details of the testing methodology, and
Section 6 contains the conclusions.

LITERATURESURVEY:

Exploration of Communication Networks from
the Enron Email Corpus

The Enron email corpus is appealing to researchers
because it is a) a large scale email collection from b)
a real organization c) over a period of 3.5 years. In
this paper we contribute to the initial investigation of
the Enron email dataset from a social network
analytic perspective. We report on how we enhanced
and refined the Enron corpus with respect to
relational data and how we extracted communication
networks from it. We apply various network analytic
techniques in order to explore structural properties of
the networks in Enron and to identify key players
across time. Our initial results indicate that during the
Enron crisis the network had been denser, more
centralized and more connected than during normal
times. Our data also suggests that during the crisis the
communication among Enron’s employees had been
more diverse with respect to people’s formal
positions, and that top executives had formed a tight
clique with mutual support and highly brokered
interactions with the rest of organization. The
insights gained with the analyses we perform and

propose are of potential further benefit for modeling
the development of crisis scenarios in organizations
and the investigation of indicators of failure.

A validation of object-oriented design metrics as
quality indicators
This paper presents the results of a study in which we
empirically investigated the suite of object-oriented
(OO) design metrics introduced in (Chidamber and
Kemerer, 1994). More specifically, our goal is to
assess these metrics as predictors of fault-prone
classes and, therefore, determine whether they can be
used as early quality indicators. This study is
complementary to the work described in (Li and
Henry, 1993) where the same suite of metrics had
been used to assess frequencies of maintenance
changes to classes. To perform our validation
accurately, we collected data on the development of
eight medium-sized information management
systems based on identical requirements. All eight
projects were developed using a sequential life cycle
model, a well-known OO analysis/design method and
the C++ programming language. Based on empirical
and quantitative analysis, the advantages and
drawbacks of these OO metrics are discussed.
Several of Chidamber and Kemerer's OO metrics
appear to be useful to predict class fault-proneness
during the early phases of the life-cycle. Also, on our
data set, they are better predictors than "traditional"
code metrics, which can only be collected at a later
phase of the software development processes.

RICH: Automatically Protecting Against Integer-
Based Vulnerabilities
We present the design and implementation of RICH
(Run-time Integer CHecking), a tool for efficiently
detecting integer-based attacks against C programs at
run time. C integer bugs, a popular avenue of attack
and frequent programming error [1–15], occur when
a variable value goes out of the range of the machine
word used to materialize it, e.g. when assigning a
large 32-bit int to a 16-bit short. We show that safe
and unsafe integer operations in C can be captured by
well-known sub-typing theory. The RICH compiler
extension compiles C programs to object code that
monitors its own execution to detect integer-based
attacks. We implemented RICH as an extension to
the GCC compiler and tested it on several network

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

438
ISSN: 2456-4265
IJMEC 2025

servers and UNIX utilities. Despite the ubiquity of
integer operations, the performance overhead of
RICH is very low, averaging about 5%. RICH found
two new integer bugs and caught all but one of the
previously known bugs we tested. These results show
that RICH is a useful and lightweight software testing
tool and run-time defense mechanism. RICH may
generate false positives when programmers use
integer overflows deliberately, and it can miss some
integer bugs because it does not model certain C
features.

Existing METHOD

In Existing system, we are using ,machine learning
algorithms like k-means, random forest and decision
tree to develop vulnerability detection tool

Disadvantages

1.Less accuracy.

PROPOSED METHOD

In proposed system, we are using Ensemble Machine
Learning algorithm which is combination of multiple
algorithms such as SVM, KNN and Naïve Bayes.

Now-a-days Machine Learning algorithms are using
everywhere from Medical disease prediction to road
side traffic prediction as this algorithms prediction
accuracy is more than 95%.

Above success of Machine Learning algorithms are
migrating us to develop vulnerability detection tool
using machine learning algorithms. Machine
Learning algorithms get trained on past data and then
can analyse new test data to predict it class of Normal
or Vulnerability type.

In propose work we are using dataset to identify 3
different classes such as ‘No Vulnerability, SQL
Injection, XSS or RFI.

Advantages

1. High Accurac

RELUS

To run project install python 3.7 and then install
MYSQL database and then copy content from DB.txt

file and paste in MYSQL to create database. Now
double click on ‘installNLTK.bat’ file to download
NLTK and once click then window will appear in
that window click on “Download’ button to
download all packages and once downloaded then
window will turn to green colour and then close the
window

Now double click on ‘run.bat’ file to start python
DJANGO web server and get below screen

In above screen python web server started and now
open browser and enter URL as
http://127.0.0.1:8000/index.html and then press enter
key to get below page

In above screen click on ‘New User Register Here’
link to get below sign up page

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

439
ISSN: 2456-4265
IJMEC 2025

In above screen user is entering sign up details and
then press button to get below page

In above screen user sign up completed and now
click on ‘User Login’ link to get below page

In above screen user is login and after login will get
below page

In above screen click on ‘Load Dataset’ link to get
below page

In above screen select and upload
‘dataset_vulner.csv’ file and then click on ‘Open’ and
‘Submit’ button to load dataset and then will get
below output

In above screen can see dataset loaded and can see
total number of records available in dataset and then
can see training number of records on which Machine
Learning algorithm get trained and then can see
number of test records on which ML will perform
prediction to calculate its prediction accuracy %.
Now click on ‘Run Ensemble Algorithms’ link to
train ensemble algorithm and then will get below
output

In above screen Ensemble Machine Learning
algorithm training completed and can see its
prediction accuracy as 95% and can see other metrics
like precision, recall and FCSORE. Now click on
‘Confusion Matrix Graph’ link to view visually how
many records ensemble predicted correctly and
incorrectly

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

440
ISSN: 2456-4265
IJMEC 2025

In above graph x-axis represents Predicted Labels
and y-axis represents True Labels and then all
different colour boxes in diagnol represents correct
prediction count and remaining all blue boxes
represents incorrect prediction count which are very
few. Now click on ‘Predict Vulnerability’ link to
upload test data and predict Vulnerability

In above screen selecting and uploading
‘testData.csv’ file which contains SQL, XSS and RFI
coding commands and then click on ‘Submit’ button
to get below output

In above table in first column can see SQL queries,
XSS and RFI coding commands and in second
column can see predicted vulnerability.

So by using above tool you can easily detect all
vulnerability and you can add NEW test command in
‘testData.csv’ file which is available inside ‘Dataset’
folder

CONCLUSION:

After extensively testing function vulnerability
classification using trivial features, n-grams, and
suffix trees, we can draw several conclusions. First of
all, we see that extracting numerous n-grams does
not, thus far, seem to give good classification results,
especially if we consider the 74% accuracy that we
got from “character diversity “to be a baseline
requirement. We also noticed that even when
combinations of n-grams were manually selected (in
a manner that would normally be illegal and lead to
overfitting), the overall result did not improve.
However, this study is a good proof-of-concept of a
very important point: trivial features can tell us a lot
about whether a function is vulnerable or not. There
are a few directions in which this research can be
taken to improve the results further. First of all, it
might be possible to think of additional trivial
features to investigate. Secondly, it might also make
sense to test some other n-gram selection techniques,
as well as some of the SciKit library’s other
classification parameters (other than default settings).
Third, it would be interesting to look more closely at
which characters (or strings) are most important,
since this would give us better insight than just
“character diversity”. One way to do this would be to
run the same character diversity tests after
eliminating different strings (square brackets, curly
brackets, ++, etc) in pre-processing. Finally, it is
possible to test whether the techniques presented in
this paper can be used to efficiently detect
vulnerabilities in other programming languages (in
addition to C).

 REFERENCES:

[1] Enron email dataset.
https://www.cs.cmu.edu/~enron/. Accessed: 2017-07-
01.

[2] National vulnerability database.
https://nvd.nist.gov. Accessed: 2017-07-01.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. A
validation of object-oriented design metrics as quality
indicators. IEEE Transactions on software
engineering, 22(10):751–761, 1996.

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265

441
ISSN: 2456-4265
IJMEC 2025

[4] D. Brumley, T.-c. Chiueh, R. Johnson, H. Lin,
and D. Song. Rich: Automatically protecting against
integer-based vulnerabilities. Department of
Electrical and Computing Engineering, page 28,
2007.

[5] N. Dor, M. Rodeh, and M. Sagiv. Cssv: Towards
a realistic tool for statically detecting all buffer
overflows in c. In ACM Sigplan Notices, volume 38,
pages 155–167. ACM, 2003.

[6] D. Evans and D. Larochelle. Improving security
using extensible lightweight static analysis. IEEE
software, 19(1):42–51, 2002.

[7] P. Godefroid, M. Y. Levin, and D. Molnar. Sage:
whitebox fuzzing for security testing. Queue,
10(1):20, 2012.

[8] I. Haller, A. Slowinska, M. Neugschwandtner,
and H. Bos. Dowsing for overflows: A guided fuzzer
to find buffer boundary violations. In USENIX
Security Symposium, pages 49–64, 2013.

[9] A. E. Hassan. Predicting faults using the
complexity of code changes. In Proceedings of the
31st International Conference on Software
Engineering, pages 78–88. IEEE Computer Society,
2009.

[10] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and
A. Zeller. Predicting faults from cached history. In
Proceedings of the 29th international conference on
Software Engineering, pages 489–498. IEEE
Computer Society, 2007.

[11] D. Larochelle, D. Evans, et al. Statically
detecting likely buffer overflow vulnerabilities. In
USENIX Security Symposium, volume 32.
Washington DC, 2001.

[12] P. Lathar, R. Shah, and K. Srinivasa. Stacy-static
code analysis for enhanced vulnerability detection.
Cogent Engineering, 4(1):1335470, 2017.

[13] R. Ma, Y. Yan, L. Wang, C. Hu, and J. Xue.
Static buffer overflow detection for c/c++ source

code based on abstract syntax tree. Journal of
Residuals Science & Technology, 13(6), 2016.

[14] R. Moser, W. Pedrycz, and G. Succi. A
comparative analysis of the efficiency of change
metrics and static code attributes for defect
prediction. In Proceedings of the 30th international
conference on Software engineering, pages 181–190.
ACM, 2008.

[15] R. M. Pampapathi, B. G. Mirkin, and M.
Levene. A suffix tree approach to antispam email
filtering. Machine Learning, 65(1):309–338, 2006.

[16] E. Penttilä et al. Improving c++ software quality
with static code analysis. N/A, 2014.

[17] H. Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications
Security, CCS ’07, pages 552–561, New York, NY,
USA, 2007. ACM.

[18] Y. Shin and L. Williams. An empirical model to
predict security vulnerabilities using code complexity
metrics. In Proceedings of the Second ACM-IEEE
international symposium on Empirical software
engineering and measurement, pages 315–317. ACM,
2008.

[19] J. Viega, J.-T. Bloch, Y. Kohno, and G.
McGraw. Its4: A static vulnerability scanner for c
and c++ code. In Computer Security Applications,
2000. ACSAC’00. 16th Annual Conference, pages
257–267. IEEE, 2000.

[20] D. Wagner, J. S. Foster, E. A. Brewer, and A.
Aiken. A first step towards automated detection of
buffer overrun vulnerabilities. In NDSS, pages 2000–
02, 2000.

