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Prediction of SQL Injection Attacks in Web Applications 

 

 

 

 

Abstract 

In today’s present time, SQL injection has become a 
significant security threat over the web for diverse 
dynamic web applications and websites. SQL 
Injection may be a sort of associate injection attack 
that produces it doable to execute malicious SQL 
statements into an online application consisting of 
SQL information. Attackers use these SQL Injection 
Queries or Statements specified if an Internet site or 
an application hosted on web contain SQL 
vulnerabilities to bypass application security 
measures. The Attacker will even go around 
authentication associated with authorization of an 
online page or Internet application and might bypass 
these methods and retrieve the content of the whole 
SQL information of an online application. The 
purpose of the proposed system is to predict the 
occurrence of a SQL injection attack on a particular 
server where an application is deployed from a given 
supply at a particular point in time. This predictive 
experiment is managed using the JMeter tool. From 
network logs, you can now pre-measure, exclude 
choices, analyze, and feed machine learning models 
to predict SQLIA. 

 

Introduction 

Permission to make digital or hard copies of 
all or part of this work for personal or classroom use 
is granted without fee provided that copies are not 
made or distributed for profit or commercial 
advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for components 
of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To 
copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 

and/or a fee. exploited for nefarious purposes when 
discovered by malicious attackers. In some cases, an 
attacker can crash an important running program, 
leading to a DoS (denial of service). In other cases, 
the attacker can escalate his privileges or even 
achieve full control over the machine. Over the years, 
numerous countermeasures have been implemented 
in both compilers and operating system to minimize 
the damage that malicious hackers can cause via 
buffer overflow attacks.  

For example, DEP (data execution 
prevention) makes the call stack non-executable, 
preventing hackers from being able to execute their 
payloads, and ASLR (address space layout 
randomization), randomizes the address space layout 
of the process, making it more difficult for hackers to 
insert correct addresses into their payloads [17]. 
However, these techniques have proven to be little 
more than a nuisance to determined adversaries. Thus 
far, the only way to prevent hackers from 
successfully completing an attack is to write secure 
code. However, complex programs, particularly those 
written in a relatively low-level language like C, are 
difficult to scan for bugs, even when using both 
manual and automated techniques.  

Microsoft spends roughly 100 machine 
years per year using automated techniques to detect 
bugs in their code [7], but their products often 
contain numerous bugs, because complex pointer 
arithmetic can sometimes be difficult to follow, 
especially when the developers are under constant 
time pressure to meet their deadlines. Since attackers 
use software to uncover security holes in programs, it 
is important for developers and security professionals 
to keep up with the latest automated vulnerability 
detection technologies. The contribution of this paper 
is a methodology for analyzing features from C 
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source code to classify functions as vulnerable or 
non-vulnerable. After finding 100 programs on 
GitHub, we parsed out all functions from these 
programs. We then extracted trivial features (function 
length, nesting depth, string entropy, etc) and non-
trivial features (n-grams and suffix trees) from these 
functions. The statistics for these features were 
arranged in a table, which was split into training data 
and test data. Several different classifiers, including 
Naive Bayes, k nearest neighbors, k means, neural 
network, support vector machine, decision tree, and 
random forest, were used to classify the test samples. 
The trivial features produced the best classification 
result, with an accuracy of 75%, while the best n-
grams result was 69% and the best suffix trees result 
was 60%. These results are discussed in more detail 
in Section 5. Section 2 discusses some background 
concepts, Section 3 discusses previous work, Section 
4 outlines the details of the testing methodology, and 
Section 6 contains the conclusions. 

LITERATURESURVEY: 

 

Exploration of Communication Networks from 
the Enron Email Corpus 

The Enron email corpus is appealing to researchers 
because it is a) a large scale email collection from b) 
a real organization c) over a period of 3.5 years. In 
this paper we contribute to the initial investigation of 
the Enron email dataset from a social network 
analytic perspective. We report on how we enhanced 
and refined the Enron corpus with respect to 
relational data and how we extracted communication 
networks from it. We apply various network analytic 
techniques in order to explore structural properties of 
the networks in Enron and to identify key players 
across time. Our initial results indicate that during the 
Enron crisis the network had been denser, more 
centralized and more connected than during normal 
times. Our data also suggests that during the crisis the 
communication among Enron’s employees had been 
more diverse with respect to people’s formal 
positions, and that top executives had formed a tight 
clique with mutual support and highly brokered 
interactions with the rest of organization. The 
insights gained with the analyses we perform and 

propose are of potential further benefit for modeling 
the development of crisis scenarios in organizations 
and the investigation of indicators of failure.  

A validation of object-oriented design metrics as 
quality indicators 
This paper presents the results of a study in which we 
empirically investigated the suite of object-oriented 
(OO) design metrics introduced in (Chidamber and 
Kemerer, 1994). More specifically, our goal is to 
assess these metrics as predictors of fault-prone 
classes and, therefore, determine whether they can be 
used as early quality indicators. This study is 
complementary to the work described in (Li and 
Henry, 1993) where the same suite of metrics had 
been used to assess frequencies of maintenance 
changes to classes. To perform our validation 
accurately, we collected data on the development of 
eight medium-sized information management 
systems based on identical requirements. All eight 
projects were developed using a sequential life cycle 
model, a well-known OO analysis/design method and 
the C++ programming language. Based on empirical 
and quantitative analysis, the advantages and 
drawbacks of these OO metrics are discussed. 
Several of Chidamber and Kemerer's OO metrics 
appear to be useful to predict class fault-proneness 
during the early phases of the life-cycle. Also, on our 
data set, they are better predictors than "traditional" 
code metrics, which can only be collected at a later 
phase of the software development processes.  

RICH: Automatically Protecting Against Integer-
Based Vulnerabilities 
We present the design and implementation of RICH 
(Run-time Integer CHecking), a tool for efficiently 
detecting integer-based attacks against C programs at 
run time. C integer bugs, a popular avenue of attack 
and frequent programming error [1–15], occur when 
a variable value goes out of the range of the machine 
word used to materialize it, e.g. when assigning a 
large 32-bit int to a 16-bit short. We show that safe 
and unsafe integer operations in C can be captured by 
well-known sub-typing theory. The RICH compiler 
extension compiles C programs to object code that 
monitors its own execution to detect integer-based 
attacks. We implemented RICH as an extension to 
the GCC compiler and tested it on several network 
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servers and UNIX utilities. Despite the ubiquity of 
integer operations, the performance overhead of 
RICH is very low, averaging about 5%. RICH found 
two new integer bugs and caught all but one of the 
previously known bugs we tested. These results show 
that RICH is a useful and lightweight software testing 
tool and run-time defense mechanism. RICH may 
generate false positives when programmers use 
integer overflows deliberately, and it can miss some 
integer bugs because it does not model certain C 
features.  

Existing METHOD 

In Existing system, we are using ,machine learning 
algorithms like k-means, random forest and decision 
tree to develop vulnerability detection tool 

Disadvantages 

1.Less accuracy. 

PROPOSED METHOD 

In proposed system, we are using Ensemble Machine 
Learning algorithm which is combination of multiple 
algorithms such as SVM, KNN and Naïve Bayes. 

Now-a-days Machine Learning algorithms are using 
everywhere from Medical disease prediction to road 
side traffic prediction as this algorithms prediction 
accuracy is more than 95%. 

Above success of Machine Learning algorithms are 
migrating us to develop vulnerability detection tool 
using machine learning algorithms. Machine 
Learning algorithms get trained on past data and then 
can analyse new test data to predict it class of Normal 
or Vulnerability type. 

In propose work we are using dataset to identify 3 
different classes such as ‘No Vulnerability, SQL 
Injection, XSS or RFI. 

Advantages 

1. High Accurac 

RELUS 

To run project install python 3.7 and then install 
MYSQL database and then copy content from DB.txt 

file and paste in MYSQL to create database. Now 
double click on ‘installNLTK.bat’ file to download 
NLTK and once click then window will appear in 
that window click on “Download’ button to 
download all packages and once downloaded then 
window will turn to green colour and then close the 
window 

Now double click on ‘run.bat’ file to start python 
DJANGO web server and get below screen 

 

In above screen python web server started and now 
open browser and enter URL as 
http://127.0.0.1:8000/index.html and then press enter 
key to get below page 

 

In above screen click on ‘New User Register Here’ 
link to get below sign up page 
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In above screen user is entering sign up details and 
then press button to get below page 

 

In above screen user sign up completed and now 
click on ‘User Login’ link to get below page 

 

In above screen user is login and after login will get 
below page 

 

In above screen click on ‘Load Dataset’ link to get 
below page 

 

In above screen select and upload 
‘dataset_vulner.csv’ file and then click on ‘Open’ and 
‘Submit’ button to load dataset and then will get 
below output 

 

In above screen can see dataset loaded and can see 
total number of records available in dataset and then 
can see training number of records on which Machine 
Learning algorithm get trained and then can see 
number of test records on which ML will perform 
prediction to calculate its prediction accuracy %. 
Now click on ‘Run Ensemble Algorithms’ link to 
train ensemble algorithm and then will get below 
output 

 

In above screen Ensemble Machine Learning 
algorithm training completed and can see its 
prediction accuracy as 95% and can see other metrics 
like precision, recall and FCSORE. Now click on 
‘Confusion Matrix Graph’ link to view visually how 
many records ensemble predicted correctly and 
incorrectly 



International Journal of Multidisciplinary Engineering in Current Research - IJMEC 

Volume 10, Issue 5, May-2025, http://ijmec.com/, ISSN: 2456-4265 

  

440 
ISSN: 2456-4265 
IJMEC 2025 

 

In above graph x-axis represents Predicted Labels 
and y-axis represents True Labels and then all 
different colour boxes in diagnol represents correct 
prediction count and remaining all blue boxes 
represents incorrect prediction count which are very 
few. Now click on ‘Predict Vulnerability’ link to 
upload test data and predict Vulnerability 

 

In above screen selecting and uploading 
‘testData.csv’ file which contains SQL, XSS and RFI 
coding commands and then click on ‘Submit’ button 
to get below output 

 

In above table in first column can see SQL queries, 
XSS and RFI coding commands and in second 
column can see predicted vulnerability. 

So by using above tool you can easily detect all 
vulnerability and you can add NEW test command in 
‘testData.csv’ file which is available inside ‘Dataset’ 
folder  

CONCLUSION: 

After extensively testing function vulnerability 
classification using trivial features, n-grams, and 
suffix trees, we can draw several conclusions. First of 
all, we see that extracting numerous n-grams does 
not, thus far, seem to give good classification results, 
especially if we consider the 74% accuracy that we 
got from “character diversity “to be a baseline 
requirement. We also noticed that even when 
combinations of n-grams were manually selected (in 
a manner that would normally be illegal and lead to 
overfitting), the overall result did not improve. 
However, this study is a good proof-of-concept of a 
very important point: trivial features can tell us a lot 
about whether a function is vulnerable or not. There 
are a few directions in which this research can be 
taken to improve the results further. First of all, it 
might be possible to think of additional trivial 
features to investigate. Secondly, it might also make 
sense to test some other n-gram selection techniques, 
as well as some of the SciKit library’s other 
classification parameters (other than default settings). 
Third, it would be interesting to look more closely at 
which characters (or strings) are most important, 
since this would give us better insight than just 
“character diversity”. One way to do this would be to 
run the same character diversity tests after 
eliminating different strings (square brackets, curly 
brackets, ++, etc) in pre-processing. Finally, it is 
possible to test whether the techniques presented in 
this paper can be used to efficiently detect 
vulnerabilities in other programming languages (in 
addition to C). 
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