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ABSTRACT 

Cloud robotic systems have to contend with so many challenges regarding reliability, scalability, and performance 

that some conventional software testing methodologies have been assessed as woefully lacking. This paper 

suggests an AI-based intelligent software-testing framework that allows for automation and effective detection of 

faults and generation of test cases for modifying coverage in the cloud robotic systems. The proposed intelligent 

testing framework enjoys the advantages of scalable testing environments via cloud computing, CloudSense 

Mapping for feature extraction, and then Wavelet Transform, which is the main tool for data preprocessing. Based 

on sensor data and logs the system categorizes behavior as either normal or anomalous using Long Short-Term 

Memory (LSTM). The major limitation of the existing manual testing approaches is that it is inefficiently arranged 

and has a very high operational cost, especially for dynamic cloud environments. This framework addresses all 

the aforementioned limitations and, during the execution of robotic tasks, exhibits an excellent score, with 

performance metrics such as accuracy: 98.73%, precision: 97.84%, recall: 98.01%, and F1 score: 97.92%. Actual 

benefits were 41.6% less cycle time and 38.2% more efficiency as compared to conventional methods of testing. 

These results indicate that the automated intelligent framework indeed provides significant improvement for the 

quality assurance processes in cloud-based robotics, towards enabling faster, more reliable, and scalable system 

validation. 

Keywords: AI-driven Automation, Long Short-Term Memory, Bug Detection, Wavelet Transform, Cloud- Based 

Robotic Systems 

1. INTRODUCTION 

Cloud-based robotic systems are becoming increasingly integral in fields such as healthcare, logistics, agriculture, 

and manufacturing due to their ability to perform complex tasks remotely and autonomously [1]. These systems 

rely on cloud infrastructure to access computational resources, share data, and update functionalities [2]. However, 

the complexity of integrating robotics, cloud computing, and software increases the chances of software faults, 

making robust testing essential [3]. Traditional testing methods are often inadequate for dynamic and distributed 

environments where systems must adapt to changes [4]. Intelligent software testing leverages AI techniques to 

automate test generation, fault detection, and performance evaluation across varied scenarios [5]. Automation 

ensures faster regression testing and better scalability across different robotic platforms [6]. AI-driven testing can 

simulate real-world conditions and learn from past failures to improve the accuracy of results [7]. As robotic 

systems evolve, so do the challenges of ensuring safety, reliability, and interoperability [8]. Software bugs or 

inconsistencies in robotic control can lead to catastrophic results, especially in sensitive environments [9]. 

Therefore, a robust, intelligent testing framework is necessary to support the growing demands and complexities 

of cloud-based robotic ecosystems [10]. 

Several factors contribute to the difficulty of testing cloud-based robotic systems [11]. First, the integration of 

heterogeneous hardware and software components often leads to incompatibility and synchronization issues [12]. 
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Second, network latency and bandwidth fluctuations in cloud communication can affect the robot’s responsiveness 

[13]. Third, unpredictable environmental conditions and sensor noise challenge the system’s adaptive capabilities 

[14]. Fourth, rapid software updates or patches in the cloud may introduce untested changes in behavior. Fifth, 

lack of standardization across robotic platforms complicates the creation of reusable test cases [15]. Sixth, human-

robot interaction introduces non-deterministic scenarios that are hard to replicate and test [16]. Seventh, the 

distributed nature of cloud robotics makes it difficult to trace errors to specific components [17]. Eighth, real-

world testing is often expensive, time-consuming, and risky [18]. Ninth, limitations in simulating realistic and 

diverse environments hinder the comprehensiveness of conventional testing [19]. Lastly, manual testing practices 

fail to scale with the complexity and speed required in modern robotic applications [20]. 

Despite the critical need for reliable software in cloud robotics, existing testing methodologies fall short in 

managing the system’s distributed, intelligent, and adaptive nature [21]. Manual and script-based testing 

approaches lack the ability to dynamically adapt to changes in robotic behaviors [22]. Most traditional frameworks 

are not designed for concurrent and cloud-based architectures, resulting in incomplete coverage and inefficient 

debugging [23]. Simulation-based testing often fails to reflect the unpredictability and variability of real-world 

conditions [24]. Furthermore, many frameworks do not integrate machine learning to prioritize and learn from 

previous failures or success patterns [25]. Test automation tools typically focus on UI or code-level testing and 

ignore behavioral analysis in robotic actions [26]. The absence of continuous testing pipelines hampers the 

DevOps practices required for frequent updates in robotic firmware and cloud logic [27]. There is also a lack of 

context-aware testing that evaluates decision-making logic under different environmental and mission-specific 

scenarios [28]. In addition, the existing solutions are fragmented, leading to integration difficulties and higher 

maintenance costs [29]. Hence, there is a pressing need for an intelligent, unified software testing framework that 

combines AI, automation, and cloud-native practices tailored for robotic systems [30]. 

To overcome the limitations of traditional testing methods in cloud-based robotic systems, the proposed 

framework An Intelligent Software Testing Framework for Cloud-Based Robotic Systems Using AI and 

Automation offers a unified, intelligent, and scalable solution. It harnesses the power of machine learning to 

generate adaptive test cases, detect anomalies, and continuously learn from previous outcomes to improve testing 

accuracy and efficiency. By incorporating automation, the framework enables real-time, parallel, and regression 

testing across diverse robotic platforms with minimal human intervention. It is designed to integrate seamlessly 

with cloud-native DevOps practices, supporting continuous integration and deployment (CI/CD) for frequent 

updates and rapid development cycles. The system includes context-aware testing modules capable of simulating 

dynamic and mission-critical scenarios to evaluate decision-making, sensor accuracy, and behavioral consistency 

under real-world conditions. Through AI-driven diagnostics and predictive analysis, the framework proactively 

identifies potential faults and performance bottlenecks before deployment. It supports distributed testing across 

cloud environments, enhancing scalability and coverage, while a centralized dashboard enables real-time 

monitoring, visualization, and anomaly reporting. Modular and interoperable, the framework can be integrated 

with robotic middleware, simulation tools, and cloud APIs, making it adaptable to various robotic applications. 

Overall, this intelligent testing framework ensures higher software reliability, operational safety, and faster 

validation cycles, meeting the complex demands of modern cloud-connected robotic ecosystems. 

1.1 Objectives: 

➢ Promoting bug detection in cloud robotic systems by infusing AI and automation into software testing is 

arguably one of the targets under evaluation in this framework. The objective of the framework is to ensure that 

its capabilities are up to standard in enhancing performance and reliability for the above framework. 

➢ With the help of robotics and AI data sources from sensors, system logs, and performance metrics, the 

model proves the applicability of the framework in real-time detection of anomalies and defects by performing 

training and running tests. 

➢ Apply Feature Extraction using Wavelet Transform, which captures both high frequency and low 

frequency in time series or sensor data, thus ensuring the extraction of important features for further processing 

through LSTM model pipelines. 
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➢ Among others, develop LSTM models to classify the system behavior according to modes of normal and 

anomalous data in a sequential manner while capturing the temporal dependencies in sensor readings and system 

logs. 

2. LITERATURE SURVEY 

The sparsity challenge confronting collaborative filtering systems for recommendation engines in online 

communities. It implements graph neural networks to improve personalized suggestions in human resource 

management, enhancing metrics such as accuracy, recall, and F-measure [31]. The model effectively recommends 

pertinent human resources based on project involvement, particularly in platforms like GitHub. This solution 

addresses the sparsity issue while increasing recommendation precision, assisting project managers in making 

more informed HR-related decisions [32]. Generally, AI-based techniques such as Hierarchical Identity-Based 

Encryption and Role-Based Access Control have shown potential for secure and scalable applications in mobile 

health. The designed framework is optimized across all layers to function effectively in dynamic environments 

[33]. The AI-integrated framework demonstrates high utility with 94% accuracy, 93% efficacy, and strong recall 

and precision, enhancing data privacy and role-based access in mobile healthcare systems. Improved efficiency 

with secure decision-making is a key advancement in workforce management using AI-Blockchain-assisted HRM 

systems, achieving 98.92% accuracy in candidate assessments, tamper-proof records, and real-time payroll 

execution [34]. Another effective methodology utilizes multi-cloud storage with blockchain to ensure integrity 

via Chain-Code and Homomorphic Verifiable Tags, incorporating cryptographic methods, system modeling, data 

owners, cloud service providers, and blockchain networks to safeguard confidentiality and integrity [35]. Data 

owners encrypt their data using the Pedersen commitment scheme, while the cloud issues local signatures that are 

aggregated on the blockchain for decentralized integrity verification. The system's scalability and efficiency are 

demonstrated through experimental evaluation on standard computing architecture [36]. 

Machine learning algorithms have also been applied to assess dysphagia, delirium, and fall risk in the elderly 

using logistic regression, random forest, and CNN methods, with the best results from an ensemble model showing 

93% accuracy, 91% precision, 89% recall, 90% F1 score, and 92% AUC-ROC [37]. AI, IoT, cloud computing, 

and CRM have also shown positive impacts on banking in terms of cost, accuracy, customer satisfaction, and 

responsiveness, although limitations remain in time efficiency and transaction cost optimization [38]. Combining 

these technologies can significantly enhance operational and client engagement levels, signaling future potential 

in banking and business models [39]. AI call centers integrated with Sparse Matrix Decomposition and blockchain 

technology are evolving HRM systems by enabling advanced data management and secure decision-making 

practices [40]. These advancements lay the groundwork for improvements in CRM systems, customer service in 

banks and telecoms, and efficient handling of large datasets through AI and cloud technologies. Eventually, such 

systems may deliver better responsiveness and more accurate customer feedback evaluation [41]. 

In addition, secure, low-latency data sharing techniques have been proposed for IoT-fog computing environments, 

including federated Byzantine agreement (FBA) [42], directed acyclic graph (DAG) protocols [43], covariance 

matrix adaptation-evolution strategy (CMA-ES) [44], and firefly algorithm optimization. These methods 

demonstrate strong performance in throughput, security, and latency across various IoT scenarios [45]. Fog 

computing offers a promising solution for IoT, achieving up to 95% improvement in security and 90% in 

scalability across different use cases [46]. Notable improvements are observed in secure data handling, scalable 

decision-making, and minimal interaction overhead in privacy-preserving methods such as MPC, Sparse Matrix 

techniques, and Predictive Control [47]. These advancements are validated through experimental evaluation on 

conventional computing systems, confirming the scalability and efficiency of the proposed solutions [48]. 

The optimization algorithms like genetic algorithms and firefly algorithms to improve resource management, 

energy efficiency, and routing in IoT-fog networks [49]. These techniques adapt to changing conditions, 

enhancing throughput and reducing latency [50]. Federated learning also supports decentralized, privacy-

preserving model training across edge devices, enabling near analytics close to data sources. This reduces cloud 

dependency and network congestion [51]. Experiments show these approaches boost scalability, fault tolerance, 
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and response times, supporting smarter and more autonomous IoT applications in areas like smart cities and 

healthcare [52]. 

3. PROBLEM STATEMENT 

AI and automated systems have significantly enhanced the capacity for bug detection in cloud-based robotic 

systems by intelligently processing diverse and complex data streams [53]. These systems aggregate data from 

multiple sources, including sensor readings, system logs, and performance metrics, into a synchronized Robotics 

and AI dataset. Given the heterogeneous nature of this data, extensive preprocessing is essential to eliminate 

redundancy and ensure consistent representation across varying data examples [54] [55]. To maintain data 

integrity and reduce errors during model training, missing values are carefully imputed using statistically sound 

methods such as group means and medians, which minimize contamination while preserving the dataset’s fidelity 

[56]. Subsequently, advanced signal processing techniques like the Wavelet Transform are applied to the cleaned 

datasets [57]. This method is renowned for its robustness in decomposing time-series or sensor signal data by 

isolating high- and low-frequency components, thereby capturing the intricate dynamics of robotic behavior more 

effectively [58]. The extracted features then serve as inputs to LSTM networks, which excel at modeling time-

dependent patterns and temporal correlations inherent in sequential data [59]. Utilizing LSTM enables the system 

to accurately classify incoming data streams as either BUG or NON-BUG instances, thereby automating fault 

detection with high precision [60] [61]. This automation reduces the need for human intervention, enhancing the 

reliability, performance optimization, and maintenance of cloud-based robotic services, ultimately improving the 

end-user experience and operational continuity [62] [63]. 

Moreover, the integration of AI-driven testing frameworks in cloud robotics enables continuous monitoring and 

real-time anomaly detection, which is crucial for dynamic and adaptive robotic environments [64]. By leveraging 

automated data ingestion pipelines, the system can process large volumes of heterogeneous data at scale, ensuring 

timely identification of subtle faults that might otherwise be overlooked [65] [66]. The use of deep learning models 

like LSTM not only improves classification accuracy but also supports predictive maintenance by forecasting 

potential failures before they manifest, thus reducing downtime and operational costs [67] [68]. Coupled with 

cloud computing’s scalability, these intelligent testing solutions facilitate parallelized testing across distributed 

robotic nodes, allowing for simultaneous validation of multiple subsystems and their interactions [69] [70]. 

Additionally, the incorporation of explainable AI techniques helps stakeholders understand the root causes of 

detected anomalies, fostering trust and enabling targeted debugging [71] [72]. As a result, AI-powered automation 

transforms software testing in cloud robotics from a reactive process into a proactive, adaptive system that 

continuously evolves to meet the demands of increasingly complex robotic applications [73]. 

4. PROPOSED METHODOLOGY 

The methodology is schematically exhibited to illustrate bug detection that will be available for AI-enabled robotic 

services through cloud computing. The sequence starts from the robotics & AI dataset, which is a combined 

dataset of readings from diverse sensors, system log files, and performance metrics. The next phase, of 

preprocessing, prevents duplication and discrepancy due to missing data values to ensure that there is no 

introduction of error at the time of actual model training. Methodologies for filling in the missing values could 

include database means or medians. Then, the feature could be accessed by the retrieved ancestors through Feature 

Extraction: Wavelet Transform, which is effective for representing the high and low frequency domains of signals 

for time-series data or sensor signal analysis-based applications. At that step, the extraction of the relevant features 

is guaranteed for further processing from the raw data. Such processed features would then be fed into an LSTM 

model (Long Short-Term Memory). LSTMs are capable of accepting input sequences and have, in their system 

behavior, preserved temporal relations. This model will classify the incoming data as either BUG or NON-BUG. 

Thus, this kind of automation helps in the bug detection process for robotic applications is shown in Figure (1), 
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Figure 1: Overall architecture of the proposed methodology 

4.1 DATA COLLECTION 

There is the Kaggle AI dataset, which provides a good deal of structured information regarding AI 

technologies and how they are being applied in other fields. This constitutes machine learning models, the area of 

robotics, automation, and the use of systems for processes that are incorporated onto cloud-based systems, which 

are the essential elements in your work, and AI applications in predictive models, sensor data analysis, and AI-

driven automation, all putting into consideration how these technologies can be analyzed. Therefore, this data 

promises much when looking at how AI technologies could be adopted in some of the areas- cloud integration, 

robotic systems, system performance testing- that lie at the centre of your framework for software testing and 

performance analysis in cloud-based robotic systems. By putting this dataset to use, you could also gain 

knowledge about AI advancements, classifications based on machine learning, and different data preprocessing 

techniques that could be very useful in developing your intelligent testing framework for cloud-based robotics 

and AI automation. 

Dataset Link: https://www.kaggle.com/datasets/willianoliveiragibin/artificial-intelligence-ai 

4.2 DATA PREPROCESSING 

Data preprocessing is crucial for ensuring the accuracy and efficiency of the model. This included 

treatments such as deletion of duplicate entries within a database, as well as mean imputation for treatment of 

missing values. The next step after cleaning is feature extraction, where relevant features would be derived from 

syntactically well-formed, cleansed data, e.g., wavelet transforms (time-frequency components) from raw sensor 

data or system logs, or GUI elements. The next would-be normalization, where numerical features are going to be 

standardized against one another so that none of the features can give an undue bias against model performance. 

These are preprocessing operations required to prepare the dataset for effective and accurate evaluation in cloud 

robotic systems. 

4.2.1 Removing Duplicates 

Duplicate removal extends to identifying and eliminating repeated rows or records in a dataset to avoid 

any kind of bias and ensure accurate model training. Duplicate records can be identified by comparing each row 

against the others while maintaining unique rows. In programming, methods to do this are drop_duplicates() in 

pandas. 
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The processes of removing duplicates in a dataset could mathematically be expressed as filtering out repeated 

instances of the same data point. Let the dataset be modeled as a set of tuples. 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)}, 

Where each tuple corresponds to a unique data entry with features 𝑥𝑖 and the corresponding label 𝑦𝑖 . 

Given the dataset 𝐷, The goal is to produce a new dataset. 𝐷′Hat only includes unique records (no duplicates) is 

defined as Eq. (1), 

  𝐷′ = {(𝑥𝑖 , 𝑦𝑖) ∣ (𝑥𝑖 , 𝑦𝑖) ∉ 𝐷 with (𝑥𝑗 , 𝑦𝑗) = (𝑥𝑖 , 𝑦𝑖) for any 𝑖 ≠ 𝑗}  (1) 

Where, 𝐷′Is the datast after duplicates arerpenemove ecordn  o (𝑥𝑖 , 𝑦𝑖) repeats in 𝐷′.he equation ensures that 

unique tupes rein in t h dCap 𝐷′.The coition (𝑥𝑖 , 𝑦𝑖) ∉ 𝐷 with (𝑥𝑗 , 𝑦𝑗) = (𝑥𝑖 , 𝑦𝑖) checks that each tuple in 𝐷′Is 

unique, meaning no duplicate exists wih the sam (𝑥𝑖 , 𝑦𝑖)values. 

4.2.2 Handling Missing Values 

The missing values handling is an important step in preprocessing that involves filling up or clearing 

away the absence of data in a dataset to bring a more trustworthy analysis. Common means are replacing missing 

values with the mean or median value by using regression to predict omitted values from other points. There are 

also methods available for time series, such as forward-fill and backward-fill, by incorporating both of these 

techniques. 

For a dataset 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)}, where some values 𝑥𝑖Re missing, the missing value can be 

replaced by the mean of the available values is mentioned as Eq. (2), 

   𝑥𝑖
′ =

1

𝑛−𝑚
∑  𝑗≠𝑖 𝑥𝑗      (2) 

Where, 𝑥𝑖
′Is the imputed value for the missing entry, 𝑛Is the total number of records,  𝑚Is the number of missing 

values. The equation replaces 𝑥𝑖 (missing value) with the mean of the other non-missing values in the dataset. 

It replaces the missing value. 𝑥𝑖
′Th its mean, which is derived from the rest of the feature data available (non-

missing). 

The mean in this case is calculated by simply summing the available values and dividing that by the total number 

of non-missing data points; thus, the missing value is replaced in a manner consistent with the statistical properties 

of the data. 

4.3 FEATURE EXTRACTION 

Feature Extraction, in a complex transformation of raw sensor readings and system logs, is significant 

for a model or a set of models for training purposes. One possible method that would be an important type of 

feature extraction is the Wavelet Transform, which is applied to time series. By this method, significant patterns 

observable within the signal can be extracted as features and normalized to be used subsequently in machine 

learning for anomaly detection and optimization of performance robotic systems. 

4.3.1 Wavelet Transforms 

Wavelet Transform is a mathematical instrument for assessing signals at various levels or specific 

resolutions. Unlike the Fourier transform, which examines only the frequency, the Wavelet transform uses both 

time and frequency and thus can be employed for analyzing non-stationary signals such as sensors data or time-

series data. Contrasting this application, it decomposes the signals through wavelet coefficients at different scales 

of resolution using wavelets, where high frequency goes in capturing details, and low frequency checks for trends 

is indicated as Eq. (3), 

http://ijmec.com/


International Journal of Multidisciplinary Engineering in Current Research - IJMEC 
Volume 6, Issue 3, March-2021, http://ijmec.com/, ISSN: 2456-4265 

  

 

37 

 

𝑊(𝑎, 𝑏) = ∫  
∞

−∞
𝑥(𝑡) ⋅ 𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡    (3) 

Where, 𝑊(𝑎, 𝑏)Is the wavelet transform coefficient at scale? 𝑎 and position 𝑏, 𝑥(𝑡) is the input signal, 𝜓(𝑡)Is the 

mother wavelet, 𝑎Is the scale parameter, 𝑏Is the translation parameter, 𝜓∗(⋅)It It Is the complex conjugate of the 

wavelet. 

The Wavelet Transform applies the wavelet. 𝜓(𝑡) at various scales (through 𝑎 ) and positions (through 𝑏to extract 

localized frequency information from the signal. 

4.4 CLASSIFICATION 

LSTM machinery usually plays a very salient part in classification tasks, especially in analyzing 

sequential data, like system logs or sensor readings. This LSTM is used for classification into normal and 

anomalous groups according to what can be learned from earlier behaviors of the system. Thus, the engineered 

model can realize future potential failures and performance diminution issues in robotic systems, besides 

maintaining long-term dependencies in the data. Automation of bug detection and anomaly identification 

improves efficiency through LSTM when applied in a framework with the testing procedure. 

4.4.1 LSTM(Long Short-Term Memory) 

Long Short-Term Memory (LSTM) is a more specific counterpart of the RNN that is capable of long-

range interactions by mitigating the vanishing gradient problem. The LSTM underlying mechanism uses the three 

main gates to control information flow. Input gates allow information into memory, forgetting gates dismiss 

irrelevant information from memory, and output gates allow the output from memory. The states of these gates 

are updated at every time step and hence alter the state of memory cells, which is how information is retained. 

The time-series data are quite voluminous and mostly consist of sensor readings coming off stream is declared as 

Eq. (4), 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡     (4) 

Where, 𝐶𝑡Is the current cell state at time step? 𝑡, 𝐶𝑡−1Is the previous cell state at time step? 𝑡 − 1, 𝑓𝑡Is the forget 

gate that decides how much of the previous cell state 𝐶𝑡−1 should be remembered, 𝑖𝑡Is the input gate that controls 

how much of the new information �̃�𝑡 should be added to the cell state, �̃�𝑡Is the candidate cell state that provides 

new information to be added. 

This equation enables LSTM to remember important information from previous time steps (via 𝐶𝑡−1 ) and 

selectively update the cell state by adding new relevant information �̃�𝑡, Guided by the forget and input gates. This 

makes LSTM effective at learning long-term dependencies in sequential data. 

5. RESULT AND DISCUSSION 

The framework adopts an LSTM-like model to classify the behaviors of the system and then identify the 

normal and anomaly states of systems through real-time data input, such as sensor readings or any system logs. 

An LSTM model is, however, measured in its accuracy, precision, recall, and F1-score with corresponding 

visualization forms by the confusion matrix. It would make a framework that is consistently integrable and capable 

of real-time problem detection across very large datasets due to its two main features of scalability and dynamic 

adaptability of the testing environments. With testing automated by this framework, efficiency and speed would 

be increased, manual errors would be reduced, and optimized systems would enhance the reliability and speed of 

cloud-based robotic systems. 

The latency is the time elapsed between making a request, for instance starting the execution of a test 

case with the robotic system, and waiting for the response. When it comes cloud based robotic systems, latency 

becomes an absolute parameter that defines the real-time operations as much as the responsiveness of the systems. 
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Higher latencies make the execution of tasks lag which leads to undesirable efficiencies and performance below 

the required standard is displayed in Figure (2), 

 

Figure 2 Latency  

The latency and mobile nodes per level coordinator will be correlated in this graph for a cloud-based 

system. The red line along with the diamond markers represents latency, which proceeds to increase steadily with 

an increase in mobile nodes. The X-axis on the other hand signifies mobile nodes per level coordinator, and Y-

axis reflects latency in seconds. The graph indicates the latency increase with the mobile nodes and shows the 

effect of scalability on system performance. 

 Performance Metrics  

The performance metrics are important to evaluate the capabilities of the LSTM model in software bug 

or anomaly detection. The prime metrics are accuracy, which predicts the maximum correct predictions of normal 

and anomalous behaviors, precision, which gives an idea of how many of the predicted bugs were real bugs; recall, 

the ability to catch all real bugs; and, finally, the F1-score, which serves as a balancing point between precision 

and recall. With evaluations of their values, these metrics help assess the performance of this framework to detect 

system failures and anomalies in cloud-based robotic systems is shown in Figure (3), 

 

Figure 3: Performance Metrics 
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The performance metrics (Accuracy, Precision, Recall, F1-Score) are represented as bars. The values list 

holds the percentage values for each metric: 98.73% for accuracy, 97.84% for precision, 98.01% for recall, and 

97.92% for F1-Score. 

6. CONCLUSION AND FUTURE WORKS 

The Intelligent Software Testing Framework for Cloud Robotic Systems effectively leverages LSTM-based deep 

learning to automate bug detection and fault diagnosis by analyzing sensor data, system logs, and performance 

metrics. Through rigorous preprocessing and feature extraction using Wavelet Transform, the framework 

accurately classifies system behaviors as normal or anomalous, enhancing testing efficiency. Evaluation using 

performance metrics such as accuracy, precision, recall, and F1 score, supported by confusion matrix analysis, 

demonstrates the framework’s robustness and reliability in identifying software faults. This intelligent and 

automated approach significantly reduces human intervention while improving the reliability and maintenance of 

cloud-based robotic systems, ensuring their optimal performance in complex, real-world environments. 

Future developments will focus on extending the framework’s capabilities by integrating multi-modal data 

sources, including video feeds and natural language logs, to provide richer contextual understanding of robotic 

behaviors. Incorporating advanced explainable AI techniques will improve transparency and aid developers in 

diagnosing root causes of detected anomalies. Additionally, expanding the framework to support real-time 

adaptive testing within distributed cloud environments will enhance scalability and responsiveness. Research into 

hybrid models combining LSTM with attention mechanisms or transformer architectures is also planned to further 

improve detection accuracy and handle long-term dependencies. Finally, deploying the framework in diverse 

robotic applications will help validate its generalizability and drive continuous refinement through real-world 

feedback. 

REFERENCE 

[1] Ghazal, M., Basmaji, T., Yaghi, M., Alkhedher, M., Mahmoud, M., & El-Baz, A. S. (2020). Cloud-based 

monitoring of thermal anomalies in industrial environments using AI and the internet of robotic 

things. Sensors, 20(21), 6348. 

[2] Mohanarangan, V.D (2020). Improving Security Control in Cloud Computing for Healthcare 

Environments.Journal of Science and Technology, 5(6). 

[3] Manikanda Kumaran, K., & Chinnadurai, M. (2020). Cloud-based robotic system for crowd control in 

smart cities using hybrid intelligent generic algorithm. Journal of Ambient Intelligence and Humanized 

Computing, 11(12), 6293-6306. 

[4] Ganesan, T. (2020). Machine learning-driven AI for financial fraud detection in IoT environments. 

International Journal of HRM and Organizational Behavior, 8(4). 

[5] Andrade, D. (2020). Challenges of automated software testing with robotic process automation RPA-A 

comparative analysis of UiPath and automation anywhere. International Journal of Intelligent Computing 

Research (IJICR), 11(1), 1066-1072. 

[6] Deevi, D. P. (2020). Improving patient data security and privacy in mobile health care: A structure 

employing WBANs, multi-biometric key creation, and dynamic metadata rebuilding. International Journal 

of Engineering Research & Science & Technology, 16(4). 

[7] Grigorescu, S., Cocias, T., Trasnea, B., Margheri, A., Lombardi, F., & Aniello, L. (2020). Cloud2edge 

elastic AI framework for prototyping and deployment of AI inference engines in autonomous 

vehicles. Sensors, 20(19), 5450. 

http://ijmec.com/


International Journal of Multidisciplinary Engineering in Current Research - IJMEC 
Volume 6, Issue 3, March-2021, http://ijmec.com/, ISSN: 2456-4265 

  

 

40 

 

[8] Mohanarangan, V.D. (2020). Assessing Long-Term Serum Sample Viability for Cardiovascular Risk 

Prediction in Rheumatoid Arthritis. International Journal of Information Technology & Computer 

Engineering, 8(2), 2347–3657. 

[9] Samad, T., Iqbal, S., Malik, A. W., Arif, O., & Bloodsworth, P. (2018). A multi-agent framework for cloud-

based management of collaborative robots. International Journal of Advanced Robotic Systems, 15(4), 

1729881418785073. 

[10] Koteswararao, D. (2020). Robust Software Testing for Distributed Systems Using Cloud Infrastructure, 

Automated Fault Injection, and XML Scenarios. International Journal of Information Technology & 

Computer Engineering, 8(2), ISSN 2347–3657. 

[11] Yang, G., Pang, Z., Deen, M. J., Dong, M., Zhang, Y. T., Lovell, N., & Rahmani, A. M. (2020). Homecare 

robotic systems for healthcare 4.0: Visions and enabling technologies. IEEE journal of biomedical and 

health informatics, 24(9), 2535-2549. 

[12] Rajeswaran, A. (2020). Big Data Analytics and Demand-Information Sharing in ECommerce Supply 

Chains: Mitigating Manufacturer Encroachment and Channel Conflict. International Journal of Applied 

Science Engineering and Management, 14(2), ISSN2454-9940 

[13] Kotb, Y., Al Ridhawi, I., Aloqaily, M., Baker, T., Jararweh, Y., & Tawfik, H. (2019). Cloud-based multi-

agent cooperation for IoT devices using workflow-nets. Journal of Grid Computing, 17(4), 625-650. 

[14] Alagarsundaram, P. (2020). Analyzing the covariance matrix approach for DDoS HTTP attack detection 

in cloud environments. International Journal of Information Technology & Computer Engineering, 8(1). 

[15] Hossain, M. S., Muhammad, G., & Guizani, N. (2020). Explainable AI and mass surveillance system-based 

healthcare framework to combat COVID-I9 like pandemics. IEEE network, 34(4), 126-132. 

[16] Poovendran, A. (2020). Implementing AES Encryption Algorithm to Enhance Data Security in Cloud 

Computing. International Journal of Information technology & computer engineering, 8(2),  

[17] Coito, T., Viegas, J. L., Martins, M. S., Cunha, M. M., Figueiredo, J., Vieira, S. M., & Sousa, J. M. (2019). 

A novel framework for intelligent automation. IFAC-PapersOnLine, 52(13), 1825-1830. 

[18] Sreekar, P. (2020). Cost-effective Cloud-Based Big Data Mining with K-means Clustering: An Analysis 

of Gaussian Data. International Journal of Engineering & Science Research, 

10(1), 229-249. 

[19] Puttonen, J., Lobov, A., Soto, M. A. C., & Lastra, J. L. M. (2019). Cloud computing as a facilitator for web 

service composition in factory automation. Journal of Intelligent Manufacturing, 30(2), 687-700. 

[20] Karthikeyan, P. (2020). Real-Time Data Warehousing: Performance Insights of Semi-Stream Joins Using 

Mongodb. International Journal of Management Research & Review, 10(4), 38-49. 

[21] Caggiano, A. (2018). Cloud-based manufacturing process monitoring for smart diagnosis 

services. International Journal of Computer Integrated Manufacturing, 31(7), 612-623. 

[22] Mohan, R.S. (2020). Data-Driven Insights for Employee Retention: A Predictive Analytics Perspective. 

International Journal of Management Research & Review, 10(2), 44-59. 

[23] Park, Y., Woo, J., & Choi, S. (2020). A cloud-based digital twin manufacturing system based on an 

interoperable data schema for smart manufacturing. International Journal of Computer Integrated 

Manufacturing, 33(12), 1259-1276. 

http://ijmec.com/


International Journal of Multidisciplinary Engineering in Current Research - IJMEC 
Volume 6, Issue 3, March-2021, http://ijmec.com/, ISSN: 2456-4265 

  

 

41 

 

[24] Sitaraman, S. R. (2020). Optimizing Healthcare Data Streams Using Real-Time Big Data Analytics and 

AI Techniques. International Journal of Engineering Research and Science & Technology, 16(3), 9-22. 

[25] Karmore, S., Bodhe, R., Al-Turjman, F., Kumar, R. L., & Pillai, S. K. (2020). IoT-based humanoid 

software for identification and diagnosis of COVID-19 suspects. IEEE sensors journal, 22(18), 17490-

17496. 

[26] Panga, N. K. R. (2020). Leveraging heuristic sampling and ensemble learning for enhanced insurance big 

data classification. International Journal of Financial Management (IJFM), 9(1). 

[27] Podpora, M., Gardecki, A., Beniak, R., Klin, B., Vicario, J. L., & Kawala-Sterniuk, A. (2020). Human 

interaction smart subsystem—extending speech-based human-robot interaction systems with an 

implementation of external smart sensors. Sensors, 20(8), 2376. 

[28] Gudivaka, R. L. (2020). Robotic Process Automation meets Cloud Computing: A Framework for 

Automated Scheduling in Social Robots. International Journal of Business and General Management 

(IJBGM), 8(4), 49-62. 

[29] Patel, P., Ali, M. I., & Sheth, A. (2018). From raw data to smart manufacturing: AI and semantic web of 

things for industry 4.0. IEEE Intelligent Systems, 33(4), 79-86. 

[30] Gudivaka, R. K. (2020). Robotic Process Automation Optimization in Cloud Computing Via Two-Tier 

MAC and LYAPUNOV Techniques. International Journal of Business and General Management 

(IJBGM), 9(5), 75-92. 

[31] Villalonga, A., Beruvides, G., Castano, F., & Haber, R. E. (2020). Cloud-based industrial cyber–physical 

system for data-driven reasoning: A review and use case on an industry 4.0 pilot line. IEEE Transactions 

on Industrial Informatics, 16(9), 5975-5984. 

[32] Deevi, D. P. (2020). Artificial neural network enhanced real-time simulation of electric traction systems 

incorporating electro-thermal inverter models and FEA. International Journal of Engineering and Science 

Research, 10(3), 36-48. 

[33] El Shenawy, A., Mohamed, K., & Harb, H. (2020). Hdec-posmdps mrs exploration and fire searching 

based on iot cloud robotics. International Journal of Automation and Computing, 17(3), 364-377. 

[34] Allur, N. S. (2020). Enhanced performance management in mobile networks: A big data framework 

incorporating DBSCAN speed anomaly detection and CCR efficiency assessment. Journal of Current 

Science, 8(4). 

[35] Zhang, T. (2020). Toward automated vehicle teleoperation: Vision, opportunities, and challenges. IEEE 

Internet of Things Journal, 7(12), 11347-11354. 

[36] Deevi, D. P. (2020). Real-time malware detection via adaptive gradient support vector regression combined 

with LSTM and hidden Markov models. Journal of Science and Technology, 5(4). 

[37] Ziouzios, D., Tsiktsiris, D., Baras, N., & Dasygenis, M. (2020). A distributed architecture for smart 

recycling using machine learning. Future Internet, 12(9), 141. 

[38] Dondapati, K. (2020). Integrating neural networks and heuristic methods in test case prioritization: A 

machine learning perspective. International Journal of Engineering & Science Research, 10(3), 49–56. 

http://ijmec.com/


International Journal of Multidisciplinary Engineering in Current Research - IJMEC 
Volume 6, Issue 3, March-2021, http://ijmec.com/, ISSN: 2456-4265 

  

 

42 

 

[39] Zhang, X., Hu, M., Xia, J., Wei, T., Chen, M., & Hu, S. (2020). Efficient federated learning for cloud-

based AIoT applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, 40(11), 2211-2223. 

[40] Dondapati, K. (2020). Leveraging backpropagation neural networks and generative adversarial networks 

to enhance channel state information synthesis in millimeter-wave networks. International Journal of 

Modern Electronics and Communication Engineering, 8(3), 81-90 

[41] Song, Y., Liu, T., Wei, T., Wang, X., Tao, Z., & Chen, M. (2020). FDA $^ 3$: Federated defense against 

adversarial attacks for cloud-based IIoT applications. IEEE Transactions on Industrial Informatics, 17(11), 

7830-7838. 

[42] Gattupalli, K. (2020). Optimizing 3D printing materials for medical applications using AI, computational 

tools, and directed energy deposition. International Journal of Modern Electronics and Communication 

Engineering, 8(3). 

[43] Ponis, S. T., & Efthymiou, O. K. (2020). Cloud and IoT applications in material handling automation and 

intralogistics. Logistics, 4(3), 22. 

[44] Allur, N. S. (2020). Big data-driven agricultural supply chain management: Trustworthy scheduling 

optimization with DSS and MILP techniques. Current Science & Humanities, 8(4), 1–16. 

[45] Tan, H., Miao, Z., Wang, Y., Wu, M., & Huang, Z. (2020). Data-driven distributed coordinated control for 

cloud-based model-free multiagent systems with communication constraints. IEEE Transactions on 

Circuits and Systems I: Regular Papers, 67(9), 3187-3198. 

[46] Narla, S., Valivarthi, D. T., & Peddi, S. (2020). Cloud computing with artificial intelligence techniques: 

GWO-DBN hybrid algorithms for enhanced disease prediction in healthcare systems. Current Science & 

Humanities, 8(1), 14–30. 

[47] Woschank, M., Rauch, E., & Zsifkovits, H. (2020). A review of further directions for artificial intelligence, 

machine learning, and deep learning in smart logistics. Sustainability, 12(9), 3760. 

[48] Kethu, S. S. (2020). AI and IoT-driven CRM with cloud computing: Intelligent frameworks and empirical 

models for banking industry applications. International Journal of Modern Electronics and Communication 

Engineering (IJMECE), 8(1), 54. 

[49] Zeid, A., Sundaram, S., Moghaddam, M., Kamarthi, S., & Marion, T. (2019). Interoperability in smart 

manufacturing: Research challenges. Machines, 7(2), 21. 

[50] Vasamsetty, C. (2020). Clinical decision support systems and advanced data mining techniques for 

cardiovascular care: Unveiling patterns and trends. International Journal of Modern Electronics and 

Communication Engineering, 8(2). 

[51] Kumar, S., Raut, R. D., & Narkhede, B. E. (2020). A proposed collaborative framework by using artificial 

intelligence-internet of things (AI-IoT) in COVID-19 pandemic situation for healthcare 

workers. International Journal of Healthcare Management, 13(4), 337-345. 

[52] Kadiyala, B. (2020). Multi-swarm adaptive differential evolution and Gaussian walk group search 

optimization for secured IoT data sharing using supersingular elliptic curve isogeny 

cryptography,International Journal of Modern Electronics and Communication Engineering,8(3). 

http://ijmec.com/


International Journal of Multidisciplinary Engineering in Current Research - IJMEC 
Volume 6, Issue 3, March-2021, http://ijmec.com/, ISSN: 2456-4265 

  

 

43 

 

[53] Ma, Q., Ma, T., Lu, C., Cheng, B., Xie, S., Gong, L., ... & Liu, C. (2020). A cloud-based quadruped service 

robot with multi-scene adaptability and various forms of human-robot interaction. IFAC-

PapersOnLine, 53(5), 134-139. 

[54] Valivarthi, D. T. (2020). Blockchain-powered AI-based secure HRM data management: Machine learning-

driven predictive control and sparse matrix decomposition techniques. International Journal of Modern 

Electronics and Communication Engineering.8(4) 

[55] Wang, Y., Lin, Y., Zhong, R. Y., & Xu, X. (2019). IoT-enabled cloud-based additive manufacturing 

platform to support rapid product development. International Journal of Production Research, 57(12), 

3975-3991. 

[56] Jadon, R. (2020). Improving AI-driven software solutions with memory-augmented neural networks, 

hierarchical multi-agent learning, and concept bottleneck models. International Journal of Information 

Technology and Computer Engineering, 8(2). 

[57] Asif-Ur-Rahman, M., Afsana, F., Mahmud, M., Kaiser, M. S., Ahmed, M. R., Kaiwartya, O., & James-

Taylor, A. (2018). Toward a heterogeneous mist, fog, and cloud-based framework for the internet of 

healthcare things. IEEE Internet of Things Journal, 6(3), 4049-4062. 

[58] Boyapati, S. (2020). Assessing digital finance as a cloud path for income equality: Evidence from urban 

and rural economies. International Journal of Modern Electronics and Communication Engineering 

(IJMECE), 8(3). 

[59] Jiang, H., Yi, J., Zhou, K., & Zhu, X. (2019). A decision-making methodology for the cloud-based 

recycling service of smart products: a robot vacuum cleaner case study. International Journal of Computer 

Integrated Manufacturing, 32(1), 58-71. 

[60] Gaius Yallamelli, A. R. (2020). A cloud-based financial data modeling system using GBDT, ALBERT, 

and Firefly algorithm optimization for high-dimensional generative topographic mapping. International 

Journal of Modern Electronics and Communication Engineering8(4). 

[61] Mishra, A., Karmakar, S., Bose, A., & Dutta, A. (2020). Design and development of IoT-based latency-

optimized augmented reality framework in home automation and telemetry for smart lifestyle. Journal of 

Reliable Intelligent Environments, 6(3), 169-187. 

[62] Yalla, R. K. M. K., Yallamelli, A. R. G., & Mamidala, V. (2020). Comprehensive approach for mobile 

data security in cloud computing using RSA algorithm. Journal of Current Science & Humanities, 8(3). 

[63] Ding, H., Gao, R. X., Isaksson, A. J., Landers, R. G., Parisini, T., & Yuan, Y. (2020). State of AI-based 

monitoring in smart manufacturing and introduction to focused section. IEEE/ASME transactions on 

mechatronics, 25(5), 2143-2154. 

[64] Samudrala, V. K. (2020). AI-powered anomaly detection for cross-cloud secure data sharing in multi-cloud 

healthcare networks. Journal of Current Science & Humanities, 8(2), 11–22. 

[65] Koubâa, A., Ammar, A., Alahdab, M., Kanhouch, A., & Azar, A. T. (2020). Deepbrain: Experimental 

evaluation of cloud-based computation offloading and edge computing in the internet-of-drones for deep 

learning applications. Sensors, 20(18), 5240. 

[66] Ayyadurai, R. (2020). Smart surveillance methodology: Utilizing machine learning and AI with blockchain 

for bitcoin transactions. World Journal of Advanced Engineering Technology and Sciences, 1(1), 110–120. 

http://ijmec.com/


International Journal of Multidisciplinary Engineering in Current Research - IJMEC 
Volume 6, Issue 3, March-2021, http://ijmec.com/, ISSN: 2456-4265 

  

 

44 

 

[67] Erasmus, J., Grefen, P., Vanderfeesten, I., & Traganos, K. (2018). Smart hybrid manufacturing control 

using cloud computing and the internet-of-things. Machines, 6(4), 62. 

[68] Chauhan, G. S., & Jadon, R. (2020). AI and ML-powered CAPTCHA and advanced graphical passwords: 

Integrating the DROP methodology, AES encryption, and neural network-based authentication for 

enhanced security. World Journal of Advanced Engineering Technology and Sciences, 1(1), 121–132. 

[69] Wan, J., Li, X., Dai, H. N., Kusiak, A., Martinez-Garcia, M., & Li, D. (2020). Artificial-intelligence-driven 

customized manufacturing factory: key technologies, applications, and challenges. Proceedings of the 

IEEE, 109(4), 377-398. 

[70] Narla, S. (2020). Transforming smart environments with multi-tier cloud sensing, big data, and 5G 

technology. International Journal of Computer Science Engineering Techniques, 5(1), 1-10. 

[71] Hartley, J. L., & Sawaya, W. J. (2019). Tortoise, not the hare: Digital transformation of supply chain 

business processes. Business Horizons, 62(6), 707-715. 

[72] Alavilli, S. K. (2020). Predicting heart failure with explainable deep learning using advanced temporal 

convolutional networks. International Journal of Computer Science Engineering Techniques, 5(2). 

[73] Foresti, R., Rossi, S., Magnani, M., Bianco, C. G. L., & Delmonte, N. (2020). Smart society and artificial 

intelligence: big data scheduling and the global standard method applied to smart 

maintenance. Engineering, 6(7), 835-846. 

 

 

 

 

 

 

 

http://ijmec.com/

