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ABSTRACT 

Traditional test-generating methodologies are unsuccessful in modern software engineering because of path 

explosion, redundancy, and inadequate failure detection, which are caused by the dynamic behaviour and 

complexity of systems. In order to optimise test pathways from Control Flow Graphs (CFGs), this study offers a 

novel deep learning strategy that combines attention processes with Graph Neural Networks (GNNs). More fault 

discovery with fewer test cases is made possible by the output GNN-Attention model's dynamic emphasis on 

semantically important nodes and execution routes. Contextual embeddings are used to ascertain path relevance, 

source code is converted to CFGs, and datasets are used to describe structural and semantic information. High-

relevance pathways are converted into executable test cases using test stubs or symbolic execution. Over 

coverage and classification accuracy, the model gains knowledge based on an aggregate losses function. The 

experimental result shows enhanced performance on 91.76% fault detection rate, 90.83% test coverage, and 

91.2% precision, along with increased scalability and efficiency. In comparison to conventional techniques, the 

model also shows a 9.3% improvement in defect identification with reduced test generation time and low 

computing cost. The rapidity, flexibility, and adoption of the model into testing CI/CD pipelines are validated by 

these results. The GNN provides a sophisticated, flexible, and context-aware method for creating software test 

routes, which helps to overcome the disadvantages of heuristic techniques and enhance software security in a 

range of contexts. 

Keywords: Software Testing, Graph Neural Networks, Attention Mechanism, Control Flow Graphs, Fault 

Detection 

1.INTRODUCTION 

Software testing is a critical phase in the software development lifecycle that ensures the quality, reliability, and 

functionality of applications [1]. One of the core objectives in software testing is to achieve high test path 

coverage, ensuring that different execution flows of a program are thoroughly verified [2]. Control Flow Graphs 

are widely used in representing the structural flow of programs, capturing the branching and looping behavior of 

code [3]. Traditional graph-based analysis techniques often face challenges in extracting complex dependencies 

within CFGs [4]. GNNs have emerged as powerful tools capable of learning structural and semantic patterns 

from graphs [5]. GNNs enable the representation of node and edge features with contextual understanding, 

which is particularly beneficial in analyzing program structures [6]. Attention mechanisms further enhance 

GNNs by allowing the model to focus on the most influential parts of the graph, improving the quality of 

learned representations [7]. Combining GNNs with attention can lead to more efficient path coverage in 

software testing by identifying critical paths more effectively [8]. This hybrid approach enhances the 

prioritization and generation of test cases, leading to better defect detection and reduced testing efforts [9]. 

http://ijmec.com/
mailto:nagendramusham9@gmail.com
mailto:venkatasivakumarmusam@gmail.com
mailto:sathiyendranganesan87@gmail.com
mailto:pushpakumar@veltech.edu.in


International Journal of Multidisciplinary Engineering in Current Research - IJMEC 

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265 

  
 

83 
ISSN: 2456-4265 
IJMEC 2023 

Therefore, a GNN-Attention based framework holds great potential to revolutionize automated software testing 

through intelligent CFG analysis [10]. 

Inefficiencies in software testing often stem from the complexity and scale of modern software systems [11]. 

Manual test path generation is labor-intensive and error-prone, especially for large codebases with numerous 

conditional branches [12]. Traditional static analysis techniques can miss subtle code dependencies and 

interactions that occur during execution [13]. Testers frequently struggle to ensure adequate path coverage 

without over-testing redundant flows [14]. CFGs provide a foundation for representing program structure but 

lack the intelligence to analyze path importance [15]. Without adaptive mechanisms, test case generation often 

results in coverage gaps or resource wastage [16]. The explosion of paths in complex CFGs further makes 

exhaustive path testing computationally expensive [17]. Many conventional tools rely on heuristic-based 

methods that don’t generalize well across different programming patterns or languages [18]. These issues 

collectively reduce the effectiveness of the testing process and delay software delivery [19]. Hence, the need 

arises for intelligent, automated solutions that can understand and prioritize paths within CFGs more effectively 

[20]. 

Despite advancements in automated testing tools, existing techniques struggle with optimizing test path 

coverage efficiently [21]. Heuristic-based approaches often fail to capture deep structural and semantic 

relationships in CFGs [22]. Static methods may overlook dynamic behaviors and indirect dependencies between 

nodes in the graph [23]. Rule-based techniques lack adaptability, leading to incomplete coverage or unnecessary 

test redundancy [24]. Classical machine learning models require handcrafted features and don't scale well with 

the increasing size and complexity of CFGs [25]. Furthermore, traditional GNNs, while promising, treat all 

nodes with equal importance and can dilute critical path information [26]. Without attention mechanisms, GNNs 

may miss key decision points that significantly affect program behavior [27]. Existing methods also suffer from 

poor generalization across different software domains and codebases [28]. As a result, test case prioritization 

and coverage remain suboptimal, leading to higher defect leakage and testing costs [29]. Therefore, there is a 

pressing need for a more intelligent, context-aware framework that integrates GNNs with attention to efficiently 

navigate and cover test paths in CFGs [30]. 

To overcome the limitations of existing software testing techniques, proposed a GNN-Attention Framework that 

combining the structural learning capabilities of Graph Neural Networks with the contextual focus of attention 

mechanisms. Unlike heuristic, rule-based, or static approaches that often miss complex dependencies in Control 

Flow Graphs, this framework learns deep structural and semantic features automatically, enabling accurate 

understanding of program behavior. The integrated attention mechanism highlights critical nodes such as 

decision points and loops, ensuring that the most significant execution paths are prioritized for testing. This 

leads to higher test path coverage with reduced redundancy and better defect detection. The model is scalable 

and adaptable, capable of generalizing across varied software codebases, thereby enhancing the efficiency, 

precision, and automation of the software testing process. 

1.1 Primary Contributions 

➢ Formulated a Framework for GNN-Attention: To ensure proper test path selection, a novel model that 

combines attention and GNNs was introduced. Defect-prone regions of flow control graphs are 

prioritised under this paradigm.  

➢ Formulated a Composites Rating and Loss Strategy: To maximise test coverage and fault 

categorisation, a critical path score function and a dual-objective loss were included.  

➢ Tested and executed test routes: Using test stubs and symbolic execution, high-relevance paths were 

converted to executable test cases in order to enhance problem discovery and path concordance. 

The structure of the paper is as follows. The purpose and significance of the suggested framework are explained 

in Section 1.A thorough literature overview of current test creation methods is provided in Section 2. The issue 

statement and study objectives are presented in Section 3. The suggested GNN-Attention technique is 

introduced in Section 4, followed by Sections 5 through 7 with findings and a comparative analysis, and Section 

8 with a conclusion and future study.  

2. RELATED WORKS 

A model-based testing strategy based on agent-based reinforcement learning was developed to structure test case 

generation and model exploration using testing metrics [31]. It achieved over 70% code coverage and produced 

more effective test cases compared to manual efforts. However, it was not evaluated for error coverage, which 

remains a future consideration [32]. A method for generating GUI test cases was introduced using the Quasi-
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Oppositional Genetic Sparrow Search Algorithm, combining evolutionary algorithms and quasi-oppositional 

learning to enhance efficiency [33]. It reached high fault detection and test coverage with reduced redundancy. 

The method’s limitation was its narrow focus, with plans to include web and mobile GUIs in the future [34]. 

A PSO-based search approach was used for branch coverage by generating trial data, outperforming various 

evolutionary algorithms in performance and efficiency on benchmark programs [35]. It significantly improved 

test coverage with fewer iterations [36]. Yet, its evaluation was limited to smaller systems, lacking real-world 

scalability validation. A Software Reliability Growth Model (SRGM) was proposed that incorporated the 

emergence of new defects and tester learning to simulate real testing [37]. It showed superior reliability and 

release planning performance on benchmark datasets. The approach required precise cost and efficiency metrics, 

which are not always available in practical scenarios [38]. 

A code-based model focusing on execution-based coverage reliability was developed, using genetic algorithms 

to support release scheduling [39]. It was more accurate and cost-effective compared to traditional models. The 

drawback was its dependence on detailed execution data, which is difficult to obtain in large systems [40]. A 

hybrid ARIMA-LSTM model was applied for fault prediction, combining linear and nonlinear trend analysis to 

enhance software reliability [41]. It outperformed individual models on real datasets, enabling proactive 

maintenance. The model was complex and required tuning and computational resources [42]. 

A continuous test case generation technique was introduced for ECU software using genetic algorithms and 

expert systems, offering efficiency in testing simulations and prototypes [43]. The method improved 

performance over traditional approaches. However, it relied heavily on expert knowledge for system 

deployment and rule definition [44]. A method combining CBR with range-reducing heuristics was used to 

generate MC/DC test data efficiently. It reduced costs and improved testing of prototypes and simulations [45]. 

The complexity of the approach and the need for specialized expertise were noted limitations [46]. 

Two models were created to address software reliability from the angles of imprecise debugging and FDR, 

effectively handling fault injection and partial rectification [47]. They outperformed earlier models in prediction 

accuracy [48]. Selecting and applying suitable FDR functions posed technical challenges. A survey was 

conducted to examine the skills gap between academic training and industry demands in the software sector, 

gathering responses from practitioners across ten countries [49]. It revealed significant mismatches and 

emphasized the need for curriculum reform and better collaboration. The findings were limited by the 

geographic concentration on Turkish graduates [50]. An empirical study investigated the intentional exclusion of 

code in test coverage for Python scripts, using commit messages and comments for analysis [51]. It found that a 

substantial portion of the excluded code was deliberate and context-specific [52]. The limitation was the 

potential for bias in coverage metrics, which could misrepresent software quality. The introduced a strategy for 

improving software test coverage by analyzing control and data dependencies using structural modeling 

approaches [53]. The method focused on enhancing the precision of test path selection and reducing 

unnecessary test executions [54]. Although it demonstrated improved accuracy and efficiency in controlled 

environments, its effectiveness in large-scale, dynamic software systems remained unproven due to a lack of 

validation and adaptability challenges [55]. 

3.PROBLEM STATEMENT 

Despite the advancements in automated software testing, existing approaches often fall short in achieving 

optimal test path coverage and reliability [56]. Techniques such as reinforcement learning-based model testing, 

evolutionary algorithms, and hybrid prediction models have shown promising results in improving fault 

detection, coverage, and cost-efficiency [57]. However, many of these methods either rely on static analysis, are 

confined to specific platforms like GUI or ECU systems, or require extensive expert input and fine-tuning [58]. 

Additionally, approaches like SRGM, ARIMA-LSTM, and FDR-based models demand precise metrics that are 

difficult to obtain in real-world environments [59]. Moreover, several strategies demonstrated effectiveness only 

on benchmark datasets, limiting their scalability and generalization to complex, dynamic, or large-scale software 

systems [60]. This inconsistency underscores the need for more adaptable and intelligent testing frameworks 

that can handle structural complexities and evolving software behaviors [61]. 

Current methods also struggle to fully capture the semantic and structural relationships within software 

components, particularly in Control Flow Graphs, which are central to test path analysis [62]. Heuristic and rule-

based techniques often overlook indirect dependencies and critical decision points, while traditional Graph 

Neural Networks treat all nodes with equal importance, potentially diluting critical path information [63]. The 

absence of contextual prioritization mechanisms leads to incomplete coverage or redundant test cases [64]. 

Additionally, many approaches lack the ability to generalize across diverse domains, increasing defect leakage 
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and testing costs [65]. Therefore, there is a pressing need for a robust, scalable, and intelligent testing 

framework that leverages GNNs integrated with attention mechanisms to prioritize high-impact paths in CFGs, 

enhance test coverage, and address the limitations of existing software testing strategies. 

3.1 Research Objectives 

❖ Develop a novel test framework that can trace semantically meaningful pathways across control flow 

graphs in order to find additional software problems. 

❖ Create an extensible and modular testing approach that ensures cross-platform compatibility and 

scalability while successfully addressing a variety of heterogeneous platforms, including desktop, 

mobile, and online apps. 

❖ Compare the suggested GNN-Attention-based testing model with the approaches used in earlier test 

routes and measure improvements in fault discovery, efficacy, and coverage. 

❖ Use machine learning models to automatically select test paths, diminishing the reliance on hand-

crafted expert rules and empowering flexible and scalable test generation. 

4. PROPOSED METHODOLOGY: 

By using GNNs along with attention processes, the proposed technique enhances source code test route planning 

and software problem identification. Static analysis and the CodeXGLUE benchmarking corpus are used to 

create Control Flow Graphs (CFGs), which have nodes that point to statements inside programs and edges that 

indicate control interdependence. Each node receives a feature vector including syntactic and semantic 

properties, which are subsequently utilised to generate a global feature matrix. To learn contextualised 

embeddings, they are fed into either (GCN) or (GAT). The model may prioritise areas that are prone to defects 

because attention processes assign nodes a priority based on their importance in the execution flow. A classifier 

employs learnt representations to determine which paths are test-relevant. During test path generation, top-k or 

threshold-based selection is utilised to pick paths with high scores. Test stubs or symbolic execution are utilised 

to convert these paths into executable test cases. An integrated loss function that maximises critical path 

coverage and enhances classification accuracy is used to train the entire model. The general flow may be shown 

in Figure 1. 

 

Figure 1:  Proposed Method-Flowchart 

4.1 Data Collection 

Microsoft's CodeXGLUE benchmark package, a comprehensive platform for testing code intelligence tasks, 

provided the dataset for this investigation. CodeXGLUE includes a large number of datasets spanning a wide 

variety of coding languages and activities, such as summarisation, translation, code completion, and fault 

diagnostics. For the current research, data suitable for static analysis was chosen, such as source codes annotated 
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with control flow structures. These data sets were used to generate Control Flow Graphs and examine the logical 

sequence of code execution. In order to build the graph-based models needed to train the model, the generated 

CFGs are used as the basis. To ensure the framework's strength and generalisability to a broad range of 

programming domains, CodeXGLUE provides a representative and superior supply of intelligent code. 

Dataset Link: https://github.com/microsoft/CodeXGLUE 

4.2. Data Preprocessing: 

Prior to training, the GNN-Attention model's uninterpreted source code has to be transformed into a graph 

representation. This is accomplished by abstracting the source code using an Abstract Syntax Tree (AST) and 

defining the logical control flow using Control Flow Graphs (CFGs). The program statements are represented by 

the nodes of each CFG, while the engaged limits display how control moves among them. Each node 𝑣𝑏  was 

represented by a feature vector  𝐱𝑏, which included syntactical and semantic data including statement type, 

operator usage, and control structures. Combining these results in a feature matrix 𝑋 ∈ ℝ|𝑉|×𝑑, where d is the 

dimension of the feature and |𝑉| is the number of nodes, as shown in Equation (1). 

                                                                           𝑋 = [

𝐱1

𝐱2

⋮
𝐱|𝑉|

]                                                                                   (1) 

To ensure constancy in languages and style, loops and conditional branching were normalized through 
graph normalisation. Every path was scored using an aggregate metric in terms of control complexity and 
previously fault likelihood for classifying critical paths. The path p criticality score was determined by 
Equation (2). 

                TestScore (𝑝) = 𝑤1 ⋅ BranchDepth(𝑝) + 𝑤2 ⋅ CyclomaticComplexity(𝑝) + 𝑤3                                     (2) 

where 𝑤1, 𝑤2, 𝑤3 are adjustable weights, BranchDepth(𝑝)is the depth of nested conditions, 

CyclomaticComplexity(𝑝)is the structural complexity, and DefectRisk(𝑝)is the estimated probability of faults 

along the path. 

4.3. Model Design 

The proposed model targets semantically significant code blocks for efficient test path selection by combining 

Attention's context-aware weighting mechanism with Graph Neural Networks' (GNNs) structural learning 

mechanism. As the model input, a CFG 𝐺 = (𝑉, 𝐸), is employed. For every node 𝑣𝑏 ∈ 𝑉, a feature vector 𝑥𝑏 ∈
ℝ𝑑 is initialized. These initial properties are forwarded to a GCN or GAT layer in the hope of extracting 

contextual embeddings. Equation (3) demonstrates the calculation of how the node embedding is established for 

the GCN variant. 

                                                        ℎ𝑏
(𝑙+1)

= 𝜎 (∑  𝑐∈𝑁(𝑏)  
1

√𝑑𝑏𝑑𝑐
𝑊(𝑙)ℎ𝑐

(𝑙)
)                                                                  (3) 

Where 𝑑𝑏  is the degree of node 𝑏, 𝑊(𝑙) represents the learnable weight matrix for layer l and 

𝑁(𝑏)represents the neighbours of node b. As illustrated in Equation (4), the GAT-based variation, on the other 

hand, uses a shared attention mechanism to determine attention coefficients 𝛼𝑏𝑐  between neighbouring nodes. 

                                                        𝛼𝑏𝑐 =
exp (LeakyReLU(𝑎⊤[𝑊ℎ𝑏‖𝑊ℎ𝑐]))

∑  𝑘∈𝑁(𝑏)  exp (LeakyReLU(𝑎⊤[𝑊ℎ𝑏‖𝑊ℎ𝑘]))
                                                 (4) 

Equation (5) shows the revised node representation. 

                                                      ℎ𝑏
′ = 𝜎(∑  𝑐∈𝑁(𝑏)  𝛼𝑏𝑐𝑊ℎ𝑐)                                                                             (5) 

Equation (6) shows how these attention layer output embeddings are eventually converted to path-level 

representations using the read-out function, usually the average or sum of the path's constituent nodes. 

                                                               𝑝𝑘 = Readout({ℎ𝑏
′ ∣ 𝑣𝑏 ∈ path𝑘})                                                       (6) 

Equation (7) demonstrates how a classifier head determines whether or not pathways are test-relevant by using 

softmax activation on fully linked layers. 
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                                                                 𝑦̂𝑘 = Softmax(𝑊𝑜 ⋅ 𝐩𝑘 + 𝑏𝑜)                                                                       (7) 

The process of classifying loss and path coverage loss are combined to get the combined loss value that is used 

to train the model. Regular cross-entropy is used in the classification section, as Equation (8) illustrates. 

                                                                ℒCE = − ∑  𝑘 𝑦𝑘 log (𝑦̂𝑘)                                                                                (8) 

Moreover, as Equation (9), the path coverage loss resulting from custom path loss penalises low coverage 

throughout the whole collection of significant paths P. 

                                                        ℒcoverage = 1 −
|𝒫covered |

|𝒫total |
                                                                                        (9) 

Equation (10) illustrates that the final loss is a weighted sum. 

                                                    ℒtotal = ℒCE + 𝜆 ⋅ ℒcoverage                                                                                      

(10) 

where λ controls the trade-off among test route coverage and classification effectiveness. Such an architecture 

facilitates the model adaptively to put more emphasis on intricate, fault-dense control paths, with the 

consequence that test case output efficiency and universality are heightened. 

 

 

Figure 2: Architecture of the Proposed GNN-Attention Framework  

Figure 2 illustrations the layout of the suggested model for test path selection. It extracts important and 

contextual information from control flow graphs using graph convolutional networks and attention processes. 

By classifying pathways as either test-relevant or not, the model reduces test redundancy and enhances defect 

identification. 

4.4 Test Path Generation: 

Next the GNN-Attention model's inference stage, each control flow path 𝑝𝑘 in a program's Control Flow Graph 

is assigned a significance score  𝑠𝑘 ∈ [0,1].The value represents the probability that the path will traverse 

significant or error-prone logic. Model output logit or softmax probabilities are utilized to calculate these scores. 

Test paths are created with a ranking mechanism according to these ratings. Test paths are generated using a 

ranking mechanism based on these ratings. To pick the highest pathways, one can use a top-k selection 

technique Equation (11) or a fixed threshold approach 𝑠𝑘 ≥ 𝜃. 

                            𝒫selected = {𝑝𝑘 ∈ 𝒫 ∣ 𝑠𝑘 ≥ 𝜃}  or  𝒫selected = TopK({𝑠𝑘}, 𝑘)                                                        

(11)  TopK(⋅, 𝑘). returns the indicators of the top k scores, where 0 represents the relevance criteria. These 

priority pathways are converted into executable test cases when they are chosen. This is accomplished by 

converting each path's node translation into corresponding source-level observations and by offering inputs that 

start the execution of each path. Test stubs, which imitate the surroundings and provide inputs to trigger certain 

processing sections, and symbolic execution, which records symbolic variables along the way and fixes them 
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with constraint solvers, are two ways to obtain input values. This improves programmatic coverage of code and 

bug exposure capacity by guaranteeing that each produced test case precisely corresponds to the control logic 

specified by the model.                                                                                                                                                                  

5. Result and discussion 

With more declaration, sector, and path coverage, the suggested model outperforms traditional CFG-based 

methods in the key criteria. It may focus on semantically important pathways, which improves fault 

identification by 9.3% and cuts down on execution time.  These findings demonstrate that the technique can 

enhance test path selection efficacy while maintaining cross-codebase generalizability. 

5.1 Evaluation metrics 

• Test Coverage 

Equation (12) determines the proportion of allowable control flow channels that are covered by the test 

instances. 

                                                      Coverage 
CFG

=
|𝒫executed |

|𝒫total |
× 100                                                                                           

(12) 

• Fault Detection Rate 

Equation (13) provides the percentage of known or seeded problems found by the test cases. 

                                                       Fault Detection Rate =
𝐹𝑑

𝐹𝑡
× 100                                                                          

(13) 

• Precision of Critical Path Identification 

Equation (14), which shows the percentage of projected critical pathways that are in fact fault-prone. 

                                                             Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                     

(14) 

• Recall of Critical Path Identification 

Equation(15) shows the percentage of definite essential routes found by the model. 

                                                                            Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                  

(15) 

• Time Taken to Generate Test Paths 

Equation (16) depicts the calculation time essential to use the GNN-Attention pipeline to construct test paths 

from source code. 

                                                                                   𝑇gen = 𝑇parse + 𝑇infer + 𝑇transform                                                                 

(16) 

• Efficiency 

Equation (17) displays the number of significant test cases those that resolve or uncover problems per unit of 

time. 

                                                                            Efficiency =
 Useful Tests 

𝑇total 
                                                                        

(17) 

• Testing Reliability 

Way to evaluate the consistency of test findings across runs or circumstances is demonstrated by Equation (18). 
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                                                                            Reliability = 1 −
𝜎outcomes 

𝜇outcomes 
                                                                  

(18) 

• Computational Overhead 

Equation (19) illustrates the increased estimating load caused by the test generation model in particular, the 

GNN-Attention inference. 

                                                                      Overhead comp =
𝑇GNN-Attention −𝑇baseline 

𝑇baseline 
× 100                                            

(19)  

• Effectiveness in Complex/Parallel Environments 

The model's capacity to sustain outcomes in the presence of synchronous code, massive systems, and concurrent 

activities is demonstrated by Equation (20). 

                                                             Effectiveness parallel =
 Coverage parallel 

 Coverage sequential 

                                                                   

(20) 

 

 

Figure 3, shows FDR (%) during a ten-week period. As testing progresses, more flaws are being found, which is 

crucial for improving software dependability and lowering hidden issues. The consistent rise in values suggests 

that the models are well-trained and adjusted. 
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Figure 3: Variation of Fault Detection Rate  

The Figure 4 depicts the distribution of test path generation times under the provided GNN-Attention paradigm. 

The central bold line indicates the median generation time, where the whiskers show the lowest and greatest 

times measured over multiple runs or programs. We may evaluate the model's efficacy and consistency using 

this form of visualisation, especially in real-world situations. The model has a relatively low computation cost 

during path creation, as seen by the modest gap between the highest and lowest timings and the median value in 

the centre of the IQR. 

 

Figure 4: Time Taken to Generate Test Paths  

Figure 5 displays an efficiency metrics graph for a 20-week study period. It illustrates how the system's 

throughput, measured in meaningful tests per second, progressively rises over time. As the model or test 

framework matures, the upward trend indicates improved resource utilisation and increased processing capacity. 

The efficiency gains indicate improved test creation and execution, which results in software quality assurance 

that is faster and more scalable. 
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Figure 5: Growth of Testing Efficiency  

Discussion 

The predicted model exhibits consistent gains in important performance metrics including defect detection ratio 

and efficiency. The model consistently and more effectively creates test pathways and finds more issues over 

time, as seen in Figures 3–4. Increased model run optimisation is indicated by shorter generation times and 

improved test throughput. These results illustrate the model's scalability and low processing overhead even 

when complex software systems are present. Extensive testing validates the model's accuracy, resilience, and 

suitability for practical situations. 

5.2 Comparative Analysis 

The success of the suggested model in contrast to traditional GA-based techniques is demonstrated in the 

comparison chart and table in Figure 6.GNN-Attention outperformed all GA-based methods, which range from 

50% to 70%, in terms of coverage (90.83%) and reliability (98.8%). Additionally, its computational overhead 

was far lower. The tendency that GNN-Attention is a leaner and more optimised solution persists, even if 

efficiency for GNN might be measured differently (as critical tests per second) than percentage measurements in 

GA techniques. Its scalability and power are further demonstrated by its 92.3% performance on complex code 

environments, which surpasses GA-based algorithms with poor performances on comparable settings. 
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Figure 6: Comparison of Performance Metrics  

6. CONCLUSION AND FUTURE WORKS 

The proposed GNN-Attention framework significantly advances automatic test path generation by achieving 

91.76% fault detection rate (FDR), 90.83% test coverage, and 91.2% accuracy in identifying key execution 

paths. By prioritizing semantically significant regions of the control flow graph and reducing redundant testing 

efforts, the model delivers a high testing throughput of 10.90 meaningful checks per second with a low 

computational cost of only 4.1 seconds. Its robust performance, reflected in a 92.3% testability efficiency and 

minimal performance variance (±1.2% standard deviation), demonstrates the model's reliability and adaptability 

to complex software structures. These results validate the framework's scalability and practical applicability in 

real-world software testing environments. 

Future development will focus on extending the framework to support dynamic code analysis and real-time test 

generation during runtime. Integration into continuous integration/continuous deployment (CI/CD) pipelines 

will enable automated, up-to-date testing workflows. Additionally, incorporating reinforcement learning 

techniques will allow adaptive prioritization of test paths based on evolving system behavior and risk levels. To 

enhance usability and broaden applicability, multilingual programming support and deployment in specialized 

domains such as embedded systems, mobile applications, and safety-critical software will be explored. 
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