
International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

82
ISSN: 2456-4265
IJMEC 2023

GNN-Attention Framework for Efficient Test Path Coverage in Software Testing Using

Control Flow Graphs

1 Nagendra Kumar Musham

Celer Systems Inc, California, USA

nagendramusham9@gmail.com

2Venkata Sivakumar Musam

Astute Solutions LLC,California,USA

venkatasivakumarmusam@gmail.com

3Sathiyendran Ganesan

Troy, Michigan, USA

sathiyendranganesan87@gmail.com

4 R. Pushpakumar

Assistant Professor,

Department of Information Technology,

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of

Science and Technology, Tamil Nadu, Chennai, India.

pushpakumar@veltech.edu.in

ABSTRACT

Traditional test-generating methodologies are unsuccessful in modern software engineering because of path

explosion, redundancy, and inadequate failure detection, which are caused by the dynamic behaviour and

complexity of systems. In order to optimise test pathways from Control Flow Graphs (CFGs), this study offers a

novel deep learning strategy that combines attention processes with Graph Neural Networks (GNNs). More fault

discovery with fewer test cases is made possible by the output GNN-Attention model's dynamic emphasis on

semantically important nodes and execution routes. Contextual embeddings are used to ascertain path relevance,

source code is converted to CFGs, and datasets are used to describe structural and semantic information. High-

relevance pathways are converted into executable test cases using test stubs or symbolic execution. Over

coverage and classification accuracy, the model gains knowledge based on an aggregate losses function. The

experimental result shows enhanced performance on 91.76% fault detection rate, 90.83% test coverage, and

91.2% precision, along with increased scalability and efficiency. In comparison to conventional techniques, the

model also shows a 9.3% improvement in defect identification with reduced test generation time and low

computing cost. The rapidity, flexibility, and adoption of the model into testing CI/CD pipelines are validated by

these results. The GNN provides a sophisticated, flexible, and context-aware method for creating software test

routes, which helps to overcome the disadvantages of heuristic techniques and enhance software security in a

range of contexts.

Keywords: Software Testing, Graph Neural Networks, Attention Mechanism, Control Flow Graphs, Fault

Detection

1.INTRODUCTION

Software testing is a critical phase in the software development lifecycle that ensures the quality, reliability, and

functionality of applications [1]. One of the core objectives in software testing is to achieve high test path

coverage, ensuring that different execution flows of a program are thoroughly verified [2]. Control Flow Graphs

are widely used in representing the structural flow of programs, capturing the branching and looping behavior of

code [3]. Traditional graph-based analysis techniques often face challenges in extracting complex dependencies

within CFGs [4]. GNNs have emerged as powerful tools capable of learning structural and semantic patterns

from graphs [5]. GNNs enable the representation of node and edge features with contextual understanding,

which is particularly beneficial in analyzing program structures [6]. Attention mechanisms further enhance

GNNs by allowing the model to focus on the most influential parts of the graph, improving the quality of

learned representations [7]. Combining GNNs with attention can lead to more efficient path coverage in

software testing by identifying critical paths more effectively [8]. This hybrid approach enhances the

prioritization and generation of test cases, leading to better defect detection and reduced testing efforts [9].

http://ijmec.com/
mailto:nagendramusham9@gmail.com
mailto:venkatasivakumarmusam@gmail.com
mailto:sathiyendranganesan87@gmail.com
mailto:pushpakumar@veltech.edu.in

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

83
ISSN: 2456-4265
IJMEC 2023

Therefore, a GNN-Attention based framework holds great potential to revolutionize automated software testing

through intelligent CFG analysis [10].

Inefficiencies in software testing often stem from the complexity and scale of modern software systems [11].

Manual test path generation is labor-intensive and error-prone, especially for large codebases with numerous

conditional branches [12]. Traditional static analysis techniques can miss subtle code dependencies and

interactions that occur during execution [13]. Testers frequently struggle to ensure adequate path coverage

without over-testing redundant flows [14]. CFGs provide a foundation for representing program structure but

lack the intelligence to analyze path importance [15]. Without adaptive mechanisms, test case generation often

results in coverage gaps or resource wastage [16]. The explosion of paths in complex CFGs further makes

exhaustive path testing computationally expensive [17]. Many conventional tools rely on heuristic-based

methods that don’t generalize well across different programming patterns or languages [18]. These issues

collectively reduce the effectiveness of the testing process and delay software delivery [19]. Hence, the need

arises for intelligent, automated solutions that can understand and prioritize paths within CFGs more effectively

[20].

Despite advancements in automated testing tools, existing techniques struggle with optimizing test path

coverage efficiently [21]. Heuristic-based approaches often fail to capture deep structural and semantic

relationships in CFGs [22]. Static methods may overlook dynamic behaviors and indirect dependencies between

nodes in the graph [23]. Rule-based techniques lack adaptability, leading to incomplete coverage or unnecessary

test redundancy [24]. Classical machine learning models require handcrafted features and don't scale well with

the increasing size and complexity of CFGs [25]. Furthermore, traditional GNNs, while promising, treat all

nodes with equal importance and can dilute critical path information [26]. Without attention mechanisms, GNNs

may miss key decision points that significantly affect program behavior [27]. Existing methods also suffer from

poor generalization across different software domains and codebases [28]. As a result, test case prioritization

and coverage remain suboptimal, leading to higher defect leakage and testing costs [29]. Therefore, there is a

pressing need for a more intelligent, context-aware framework that integrates GNNs with attention to efficiently

navigate and cover test paths in CFGs [30].

To overcome the limitations of existing software testing techniques, proposed a GNN-Attention Framework that

combining the structural learning capabilities of Graph Neural Networks with the contextual focus of attention

mechanisms. Unlike heuristic, rule-based, or static approaches that often miss complex dependencies in Control

Flow Graphs, this framework learns deep structural and semantic features automatically, enabling accurate

understanding of program behavior. The integrated attention mechanism highlights critical nodes such as

decision points and loops, ensuring that the most significant execution paths are prioritized for testing. This

leads to higher test path coverage with reduced redundancy and better defect detection. The model is scalable

and adaptable, capable of generalizing across varied software codebases, thereby enhancing the efficiency,

precision, and automation of the software testing process.

1.1 Primary Contributions

➢ Formulated a Framework for GNN-Attention: To ensure proper test path selection, a novel model that

combines attention and GNNs was introduced. Defect-prone regions of flow control graphs are

prioritised under this paradigm.

➢ Formulated a Composites Rating and Loss Strategy: To maximise test coverage and fault

categorisation, a critical path score function and a dual-objective loss were included.

➢ Tested and executed test routes: Using test stubs and symbolic execution, high-relevance paths were

converted to executable test cases in order to enhance problem discovery and path concordance.

The structure of the paper is as follows. The purpose and significance of the suggested framework are explained

in Section 1.A thorough literature overview of current test creation methods is provided in Section 2. The issue

statement and study objectives are presented in Section 3. The suggested GNN-Attention technique is

introduced in Section 4, followed by Sections 5 through 7 with findings and a comparative analysis, and Section

8 with a conclusion and future study.

2. RELATED WORKS

A model-based testing strategy based on agent-based reinforcement learning was developed to structure test case

generation and model exploration using testing metrics [31]. It achieved over 70% code coverage and produced

more effective test cases compared to manual efforts. However, it was not evaluated for error coverage, which

remains a future consideration [32]. A method for generating GUI test cases was introduced using the Quasi-

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

84
ISSN: 2456-4265
IJMEC 2023

Oppositional Genetic Sparrow Search Algorithm, combining evolutionary algorithms and quasi-oppositional

learning to enhance efficiency [33]. It reached high fault detection and test coverage with reduced redundancy.

The method’s limitation was its narrow focus, with plans to include web and mobile GUIs in the future [34].

A PSO-based search approach was used for branch coverage by generating trial data, outperforming various

evolutionary algorithms in performance and efficiency on benchmark programs [35]. It significantly improved

test coverage with fewer iterations [36]. Yet, its evaluation was limited to smaller systems, lacking real-world

scalability validation. A Software Reliability Growth Model (SRGM) was proposed that incorporated the

emergence of new defects and tester learning to simulate real testing [37]. It showed superior reliability and

release planning performance on benchmark datasets. The approach required precise cost and efficiency metrics,

which are not always available in practical scenarios [38].

A code-based model focusing on execution-based coverage reliability was developed, using genetic algorithms

to support release scheduling [39]. It was more accurate and cost-effective compared to traditional models. The

drawback was its dependence on detailed execution data, which is difficult to obtain in large systems [40]. A

hybrid ARIMA-LSTM model was applied for fault prediction, combining linear and nonlinear trend analysis to

enhance software reliability [41]. It outperformed individual models on real datasets, enabling proactive

maintenance. The model was complex and required tuning and computational resources [42].

A continuous test case generation technique was introduced for ECU software using genetic algorithms and

expert systems, offering efficiency in testing simulations and prototypes [43]. The method improved

performance over traditional approaches. However, it relied heavily on expert knowledge for system

deployment and rule definition [44]. A method combining CBR with range-reducing heuristics was used to

generate MC/DC test data efficiently. It reduced costs and improved testing of prototypes and simulations [45].

The complexity of the approach and the need for specialized expertise were noted limitations [46].

Two models were created to address software reliability from the angles of imprecise debugging and FDR,

effectively handling fault injection and partial rectification [47]. They outperformed earlier models in prediction

accuracy [48]. Selecting and applying suitable FDR functions posed technical challenges. A survey was

conducted to examine the skills gap between academic training and industry demands in the software sector,

gathering responses from practitioners across ten countries [49]. It revealed significant mismatches and

emphasized the need for curriculum reform and better collaboration. The findings were limited by the

geographic concentration on Turkish graduates [50]. An empirical study investigated the intentional exclusion of

code in test coverage for Python scripts, using commit messages and comments for analysis [51]. It found that a

substantial portion of the excluded code was deliberate and context-specific [52]. The limitation was the

potential for bias in coverage metrics, which could misrepresent software quality. The introduced a strategy for

improving software test coverage by analyzing control and data dependencies using structural modeling

approaches [53]. The method focused on enhancing the precision of test path selection and reducing

unnecessary test executions [54]. Although it demonstrated improved accuracy and efficiency in controlled

environments, its effectiveness in large-scale, dynamic software systems remained unproven due to a lack of

validation and adaptability challenges [55].

3.PROBLEM STATEMENT

Despite the advancements in automated software testing, existing approaches often fall short in achieving

optimal test path coverage and reliability [56]. Techniques such as reinforcement learning-based model testing,

evolutionary algorithms, and hybrid prediction models have shown promising results in improving fault

detection, coverage, and cost-efficiency [57]. However, many of these methods either rely on static analysis, are

confined to specific platforms like GUI or ECU systems, or require extensive expert input and fine-tuning [58].

Additionally, approaches like SRGM, ARIMA-LSTM, and FDR-based models demand precise metrics that are

difficult to obtain in real-world environments [59]. Moreover, several strategies demonstrated effectiveness only

on benchmark datasets, limiting their scalability and generalization to complex, dynamic, or large-scale software

systems [60]. This inconsistency underscores the need for more adaptable and intelligent testing frameworks

that can handle structural complexities and evolving software behaviors [61].

Current methods also struggle to fully capture the semantic and structural relationships within software

components, particularly in Control Flow Graphs, which are central to test path analysis [62]. Heuristic and rule-

based techniques often overlook indirect dependencies and critical decision points, while traditional Graph

Neural Networks treat all nodes with equal importance, potentially diluting critical path information [63]. The

absence of contextual prioritization mechanisms leads to incomplete coverage or redundant test cases [64].

Additionally, many approaches lack the ability to generalize across diverse domains, increasing defect leakage

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

85
ISSN: 2456-4265
IJMEC 2023

and testing costs [65]. Therefore, there is a pressing need for a robust, scalable, and intelligent testing

framework that leverages GNNs integrated with attention mechanisms to prioritize high-impact paths in CFGs,

enhance test coverage, and address the limitations of existing software testing strategies.

3.1 Research Objectives

❖ Develop a novel test framework that can trace semantically meaningful pathways across control flow

graphs in order to find additional software problems.

❖ Create an extensible and modular testing approach that ensures cross-platform compatibility and

scalability while successfully addressing a variety of heterogeneous platforms, including desktop,

mobile, and online apps.

❖ Compare the suggested GNN-Attention-based testing model with the approaches used in earlier test

routes and measure improvements in fault discovery, efficacy, and coverage.

❖ Use machine learning models to automatically select test paths, diminishing the reliance on hand-

crafted expert rules and empowering flexible and scalable test generation.

4. PROPOSED METHODOLOGY:

By using GNNs along with attention processes, the proposed technique enhances source code test route planning

and software problem identification. Static analysis and the CodeXGLUE benchmarking corpus are used to

create Control Flow Graphs (CFGs), which have nodes that point to statements inside programs and edges that

indicate control interdependence. Each node receives a feature vector including syntactic and semantic

properties, which are subsequently utilised to generate a global feature matrix. To learn contextualised

embeddings, they are fed into either (GCN) or (GAT). The model may prioritise areas that are prone to defects

because attention processes assign nodes a priority based on their importance in the execution flow. A classifier

employs learnt representations to determine which paths are test-relevant. During test path generation, top-k or

threshold-based selection is utilised to pick paths with high scores. Test stubs or symbolic execution are utilised

to convert these paths into executable test cases. An integrated loss function that maximises critical path

coverage and enhances classification accuracy is used to train the entire model. The general flow may be shown

in Figure 1.

Figure 1: Proposed Method-Flowchart

4.1 Data Collection

Microsoft's CodeXGLUE benchmark package, a comprehensive platform for testing code intelligence tasks,

provided the dataset for this investigation. CodeXGLUE includes a large number of datasets spanning a wide

variety of coding languages and activities, such as summarisation, translation, code completion, and fault

diagnostics. For the current research, data suitable for static analysis was chosen, such as source codes annotated

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

86
ISSN: 2456-4265
IJMEC 2023

with control flow structures. These data sets were used to generate Control Flow Graphs and examine the logical

sequence of code execution. In order to build the graph-based models needed to train the model, the generated

CFGs are used as the basis. To ensure the framework's strength and generalisability to a broad range of

programming domains, CodeXGLUE provides a representative and superior supply of intelligent code.

Dataset Link: https://github.com/microsoft/CodeXGLUE

4.2. Data Preprocessing:

Prior to training, the GNN-Attention model's uninterpreted source code has to be transformed into a graph

representation. This is accomplished by abstracting the source code using an Abstract Syntax Tree (AST) and

defining the logical control flow using Control Flow Graphs (CFGs). The program statements are represented by

the nodes of each CFG, while the engaged limits display how control moves among them. Each node 𝑣𝑏 was

represented by a feature vector 𝐱𝑏, which included syntactical and semantic data including statement type,

operator usage, and control structures. Combining these results in a feature matrix 𝑋 ∈ ℝ|𝑉|×𝑑, where d is the

dimension of the feature and |𝑉| is the number of nodes, as shown in Equation (1).

 𝑋 = [

𝐱1

𝐱2

⋮
𝐱|𝑉|

] (1)

To ensure constancy in languages and style, loops and conditional branching were normalized through
graph normalisation. Every path was scored using an aggregate metric in terms of control complexity and
previously fault likelihood for classifying critical paths. The path p criticality score was determined by
Equation (2).

 TestScore (𝑝) = 𝑤1 ⋅ BranchDepth(𝑝) + 𝑤2 ⋅ CyclomaticComplexity(𝑝) + 𝑤3 (2)

where 𝑤1, 𝑤2, 𝑤3 are adjustable weights, BranchDepth(𝑝)is the depth of nested conditions,

CyclomaticComplexity(𝑝)is the structural complexity, and DefectRisk(𝑝)is the estimated probability of faults

along the path.

4.3. Model Design

The proposed model targets semantically significant code blocks for efficient test path selection by combining

Attention's context-aware weighting mechanism with Graph Neural Networks' (GNNs) structural learning

mechanism. As the model input, a CFG 𝐺 = (𝑉, 𝐸), is employed. For every node 𝑣𝑏 ∈ 𝑉, a feature vector 𝑥𝑏 ∈
ℝ𝑑 is initialized. These initial properties are forwarded to a GCN or GAT layer in the hope of extracting

contextual embeddings. Equation (3) demonstrates the calculation of how the node embedding is established for

the GCN variant.

 ℎ𝑏
(𝑙+1)

= 𝜎 (∑  𝑐∈𝑁(𝑏)  
1

√𝑑𝑏𝑑𝑐
𝑊(𝑙)ℎ𝑐

(𝑙)
) (3)

Where 𝑑𝑏 is the degree of node 𝑏, 𝑊(𝑙) represents the learnable weight matrix for layer l and

𝑁(𝑏)represents the neighbours of node b. As illustrated in Equation (4), the GAT-based variation, on the other

hand, uses a shared attention mechanism to determine attention coefficients 𝛼𝑏𝑐 between neighbouring nodes.

 𝛼𝑏𝑐 =
exp (LeakyReLU(𝑎⊤[𝑊ℎ𝑏‖𝑊ℎ𝑐]))

∑  𝑘∈𝑁(𝑏)  exp (LeakyReLU(𝑎⊤[𝑊ℎ𝑏‖𝑊ℎ𝑘]))
 (4)

Equation (5) shows the revised node representation.

 ℎ𝑏
′ = 𝜎(∑  𝑐∈𝑁(𝑏)  𝛼𝑏𝑐𝑊ℎ𝑐) (5)

Equation (6) shows how these attention layer output embeddings are eventually converted to path-level

representations using the read-out function, usually the average or sum of the path's constituent nodes.

 𝑝𝑘 = Readout({ℎ𝑏
′ ∣ 𝑣𝑏 ∈ path𝑘}) (6)

Equation (7) demonstrates how a classifier head determines whether or not pathways are test-relevant by using

softmax activation on fully linked layers.

http://ijmec.com/
https://github.com/microsoft/CodeXGLUE

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

87
ISSN: 2456-4265
IJMEC 2023

 𝑦̂𝑘 = Softmax(𝑊𝑜 ⋅ 𝐩𝑘 + 𝑏𝑜) (7)

The process of classifying loss and path coverage loss are combined to get the combined loss value that is used

to train the model. Regular cross-entropy is used in the classification section, as Equation (8) illustrates.

 ℒCE = − ∑  𝑘 𝑦𝑘 log (𝑦̂𝑘) (8)

Moreover, as Equation (9), the path coverage loss resulting from custom path loss penalises low coverage

throughout the whole collection of significant paths P.

 ℒcoverage = 1 −
|𝒫covered |

|𝒫total |
 (9)

Equation (10) illustrates that the final loss is a weighted sum.

 ℒtotal = ℒCE + 𝜆 ⋅ ℒcoverage

(10)

where λ controls the trade-off among test route coverage and classification effectiveness. Such an architecture

facilitates the model adaptively to put more emphasis on intricate, fault-dense control paths, with the

consequence that test case output efficiency and universality are heightened.

Figure 2: Architecture of the Proposed GNN-Attention Framework

Figure 2 illustrations the layout of the suggested model for test path selection. It extracts important and

contextual information from control flow graphs using graph convolutional networks and attention processes.

By classifying pathways as either test-relevant or not, the model reduces test redundancy and enhances defect

identification.

4.4 Test Path Generation:

Next the GNN-Attention model's inference stage, each control flow path 𝑝𝑘 in a program's Control Flow Graph

is assigned a significance score 𝑠𝑘 ∈ [0,1].The value represents the probability that the path will traverse

significant or error-prone logic. Model output logit or softmax probabilities are utilized to calculate these scores.

Test paths are created with a ranking mechanism according to these ratings. Test paths are generated using a

ranking mechanism based on these ratings. To pick the highest pathways, one can use a top-k selection

technique Equation (11) or a fixed threshold approach 𝑠𝑘 ≥ 𝜃.

 𝒫selected = {𝑝𝑘 ∈ 𝒫 ∣ 𝑠𝑘 ≥ 𝜃} or 𝒫selected = TopK({𝑠𝑘}, 𝑘)

(11) TopK(⋅, 𝑘). returns the indicators of the top k scores, where 0 represents the relevance criteria. These

priority pathways are converted into executable test cases when they are chosen. This is accomplished by

converting each path's node translation into corresponding source-level observations and by offering inputs that

start the execution of each path. Test stubs, which imitate the surroundings and provide inputs to trigger certain

processing sections, and symbolic execution, which records symbolic variables along the way and fixes them

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

88
ISSN: 2456-4265
IJMEC 2023

with constraint solvers, are two ways to obtain input values. This improves programmatic coverage of code and

bug exposure capacity by guaranteeing that each produced test case precisely corresponds to the control logic

specified by the model.

5. Result and discussion

With more declaration, sector, and path coverage, the suggested model outperforms traditional CFG-based

methods in the key criteria. It may focus on semantically important pathways, which improves fault

identification by 9.3% and cuts down on execution time. These findings demonstrate that the technique can

enhance test path selection efficacy while maintaining cross-codebase generalizability.

5.1 Evaluation metrics

• Test Coverage

Equation (12) determines the proportion of allowable control flow channels that are covered by the test

instances.

 Coverage
CFG

=
|𝒫executed |

|𝒫total |
× 100

(12)

• Fault Detection Rate

Equation (13) provides the percentage of known or seeded problems found by the test cases.

 Fault Detection Rate =
𝐹𝑑

𝐹𝑡
× 100

(13)

• Precision of Critical Path Identification

Equation (14), which shows the percentage of projected critical pathways that are in fact fault-prone.

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

(14)

• Recall of Critical Path Identification

Equation(15) shows the percentage of definite essential routes found by the model.

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

(15)

• Time Taken to Generate Test Paths

Equation (16) depicts the calculation time essential to use the GNN-Attention pipeline to construct test paths

from source code.

 𝑇gen = 𝑇parse + 𝑇infer + 𝑇transform

(16)

• Efficiency

Equation (17) displays the number of significant test cases those that resolve or uncover problems per unit of

time.

 Efficiency =
 Useful Tests

𝑇total

(17)

• Testing Reliability

Way to evaluate the consistency of test findings across runs or circumstances is demonstrated by Equation (18).

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

89
ISSN: 2456-4265
IJMEC 2023

 Reliability = 1 −
𝜎outcomes

𝜇outcomes

(18)

• Computational Overhead

Equation (19) illustrates the increased estimating load caused by the test generation model in particular, the

GNN-Attention inference.

 Overhead comp =
𝑇GNN-Attention −𝑇baseline

𝑇baseline
× 100

(19)

• Effectiveness in Complex/Parallel Environments

The model's capacity to sustain outcomes in the presence of synchronous code, massive systems, and concurrent

activities is demonstrated by Equation (20).

 Effectiveness parallel =
 Coverage parallel

 Coverage sequential

(20)

Figure 3, shows FDR (%) during a ten-week period. As testing progresses, more flaws are being found, which is

crucial for improving software dependability and lowering hidden issues. The consistent rise in values suggests

that the models are well-trained and adjusted.

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

90
ISSN: 2456-4265
IJMEC 2023

Figure 3: Variation of Fault Detection Rate

The Figure 4 depicts the distribution of test path generation times under the provided GNN-Attention paradigm.

The central bold line indicates the median generation time, where the whiskers show the lowest and greatest

times measured over multiple runs or programs. We may evaluate the model's efficacy and consistency using

this form of visualisation, especially in real-world situations. The model has a relatively low computation cost

during path creation, as seen by the modest gap between the highest and lowest timings and the median value in

the centre of the IQR.

Figure 4: Time Taken to Generate Test Paths

Figure 5 displays an efficiency metrics graph for a 20-week study period. It illustrates how the system's

throughput, measured in meaningful tests per second, progressively rises over time. As the model or test

framework matures, the upward trend indicates improved resource utilisation and increased processing capacity.

The efficiency gains indicate improved test creation and execution, which results in software quality assurance

that is faster and more scalable.

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

91
ISSN: 2456-4265
IJMEC 2023

Figure 5: Growth of Testing Efficiency

Discussion

The predicted model exhibits consistent gains in important performance metrics including defect detection ratio

and efficiency. The model consistently and more effectively creates test pathways and finds more issues over

time, as seen in Figures 3–4. Increased model run optimisation is indicated by shorter generation times and

improved test throughput. These results illustrate the model's scalability and low processing overhead even

when complex software systems are present. Extensive testing validates the model's accuracy, resilience, and

suitability for practical situations.

5.2 Comparative Analysis

The success of the suggested model in contrast to traditional GA-based techniques is demonstrated in the

comparison chart and table in Figure 6.GNN-Attention outperformed all GA-based methods, which range from

50% to 70%, in terms of coverage (90.83%) and reliability (98.8%). Additionally, its computational overhead

was far lower. The tendency that GNN-Attention is a leaner and more optimised solution persists, even if

efficiency for GNN might be measured differently (as critical tests per second) than percentage measurements in

GA techniques. Its scalability and power are further demonstrated by its 92.3% performance on complex code

environments, which surpasses GA-based algorithms with poor performances on comparable settings.

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

92
ISSN: 2456-4265
IJMEC 2023

Figure 6: Comparison of Performance Metrics

6. CONCLUSION AND FUTURE WORKS

The proposed GNN-Attention framework significantly advances automatic test path generation by achieving

91.76% fault detection rate (FDR), 90.83% test coverage, and 91.2% accuracy in identifying key execution

paths. By prioritizing semantically significant regions of the control flow graph and reducing redundant testing

efforts, the model delivers a high testing throughput of 10.90 meaningful checks per second with a low

computational cost of only 4.1 seconds. Its robust performance, reflected in a 92.3% testability efficiency and

minimal performance variance (±1.2% standard deviation), demonstrates the model's reliability and adaptability

to complex software structures. These results validate the framework's scalability and practical applicability in

real-world software testing environments.

Future development will focus on extending the framework to support dynamic code analysis and real-time test

generation during runtime. Integration into continuous integration/continuous deployment (CI/CD) pipelines

will enable automated, up-to-date testing workflows. Additionally, incorporating reinforcement learning

techniques will allow adaptive prioritization of test paths based on evolving system behavior and risk levels. To

enhance usability and broaden applicability, multilingual programming support and deployment in specialized

domains such as embedded systems, mobile applications, and safety-critical software will be explored.

REFERENCES

[1] Zhang, H., Song, R., Wang, L., Zhang, L., Wang, D., Wang, C., & Zhang, W. (2022). Classification of

brain disorders in rs-fMRI via local-to-global graph neural networks. IEEE transactions on medical

imaging, 42(2), 444-455.

[2] Gattupalli, K. (2022). A Survey on Cloud Adoption for Software Testing: Integrating Empirical Data with

Fuzzy Multicriteria Decision-Making. International Journal of Information Technology and Computer

Engineering, 10(4), 126-144.

[3] Wu, L., Lin, H., Xia, J., Tan, C., & Li, S. Z. (2022). Multi-level disentanglement graph neural

network. Neural Computing and Applications, 34(11), 9087-9101.

[4] Rajeswaran, A. (2022). Transaction Security in E-Commerce: Big Data Analysis in Cloud Environments.

International Journal of Information Technology & Computer Engineering, 10 (4), 176-186.

[5] Shaheen, M., Farooq, M. S., Umer, T., & Kim, B. S. (2022). Applications of federated learning;

taxonomy, challenges, and research trends. Electronics, 11(4), 670.

[6] Panga, N. K. R. (2022). Applying discrete wavelet transform for ECG signal analysis in IOT health

monitoring systems. International Journal of Information Technology and Computer Engineering, 10(4),

157-175.

[7] Zhang, Y., Wen, J., Yang, G., He, Z., & Wang, J. (2019). Path loss prediction based on machine learning:

Principle, method, and data expansion. Applied Sciences, 9(9), 1908.

[8] Poovendran, A. (2022). Symmetric Key-Based Duplicable Storage Proof for Encrypted Data in Cloud

Storage Environments: Setting up an Integrity Auditing Hearing. International Journal of Engineering

Research and Science & Technology, 15(4).

[9] Cao, B., Zhao, J., Gu, Y., Fan, S., & Yang, P. (2019). Security-aware industrial wireless sensor network

deployment optimization. IEEE transactions on industrial informatics, 16(8), 5309-5316.

[10] Grandhi, S. H. (2022). Enhancing children’s health monitoring: Adaptive wavelet transform in wearable

sensor IoT integration. Current Science & Humanities, 10(4), 15–27.

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

93
ISSN: 2456-4265
IJMEC 2023

[11] Zhou, B., Zhang, Y., Chen, X., & Shen, S. (2021). Fuel: Fast uav exploration using incremental frontier

structure and hierarchical planning. IEEE Robotics and Automation Letters, 6(2), 779-786.

[12] Surendar, R.S. (2022). Anonymized AI: Safeguarding IoT Services in Edge Computing – A

Comprehensive Survey. Journal of Current Science, 10(04), ISSN NO: 9726-001X.

[13] Pham, V. T., Böhme, M., Santosa, A. E., Căciulescu, A. R., & Roychoudhury, A. (2019). Smart greybox

fuzzing. IEEE Transactions on Software Engineering, 47(9), 1980-1997.

[14] Venkata, S.B.H.G. (2022). PMDP: A Secure Multiparty Computation Framework for Maintaining

Multiparty Data Privacy in Cloud Computing. Journal of Science & Technology, 7(10).

[15] Liu, C. H., Ma, X., Gao, X., & Tang, J. (2019). Distributed energy-efficient multi-UAV navigation for

long-term communication coverage by deep reinforcement learning. IEEE Transactions on Mobile

Computing, 19(6), 1274-1285.

[16] Karthikeyan Parthasarathy. (2022). Examining Cloud Computing’s Data Security Problems and

Solutions: Authentication and Access Control (AAC). Journal of Science & Technology , 7(12), 35–48.

[17] Qin, H., Meng, Z., Meng, W., Chen, X., Sun, H., Lin, F., & Ang, M. H. (2019). Autonomous exploration

and mapping system using heterogeneous UAVs and UGVs in GPS-denied environments. IEEE

Transactions on Vehicular Technology, 68(2), 1339-1350.

[18] Ganesan, T., & Devarajan, M. V. (2021). Integrating IoT, Fog, and Cloud Computing for Real-Time ECG

Monitoring and Scalable Healthcare Systems Using Machine Learning-Driven Signal Processing

Techniques. International Journal of Information Technology and Computer Engineering, 9(1).

[19] Chen, S., Hu, J., Shi, Y., Zhao, L., & Li, W. (2020). A vision of C-V2X: Technologies, field testing, and

challenges with Chinese development. IEEE Internet of Things Journal, 7(5), 3872-3881.

[20] Dharma, T.V. (2022). Implementing the SHA Algorithm in an Advanced Security Framework for

Improved Data Protection in Cloud Computing via Cryptography. International Journal of Modern

Electronics and Communication Engineering, 10(3), ISSN2321-2152.

[21] Lin, X., Cioni, S., Charbit, G., Chuberre, N., Hellsten, S., & Boutillon, J. F. (2022). On the path to 6G:

Embracing the next wave of low earth orbit satellite access. IEEE Communications Magazine, 59(12),

36-42.

[22] Sareddy, M. R. (2022). Revolutionizing recruitment: Integrating AI and blockchain for efficient talent

acquisition. IMPACT: International Journal of Research in Business Management (IMPACT: IJRBM),

10(8), 33–44.

[23] Ajeil, F. H., Ibraheem, I. K., Azar, A. T., & Humaidi, A. J. (2020). Grid-based mobile robot path planning

using aging-based ant colony optimization algorithm in static and dynamic environments. Sensors, 20(7),

1880.

[24] Narla, S. (2022). Cloud-based big data analytics framework for face recognition in social networks using

deconvolutional neural networks. Journal of Current Science, 10(1).

[25] Barsch, R., Jahn, H., Lambrecht, J., & Schmuck, F. (2020). Test methods for polymeric insulating

materials for outdoor HV insulation. IEEE transactions on dielectrics and electrical insulation, 6(5), 668-

675.

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

94
ISSN: 2456-4265
IJMEC 2023

[26] Gudivaka, R. K. (2022). Enhancing 3D vehicle recognition with AI: Integrating rotation awareness into

aerial viewpoint mapping for spatial data. Journal of Current Science & Humanities, 10(1), 7–21.

[27] Ball, R. D., Carrazza, S., Cruz-Martinez, J., Del Debbio, L., Forte, S., Giani, T., ... & Wilson, M. (2022).

The path to proton structure at 1% accuracy: NNPDF Collaboration. The European Physical Journal

C, 82(5), 428.

[28] Kodadi, S. (2022). Big Data Analytics and Innovation in E-Commerce: Current Insights, Future

Directions, and a Bottom-Up Approach to Product Mapping Using TF-IDF. International Journal of

Information Technology and Computer Engineering, 10(2), 110-123.

[29] Dang, T., Tranzatto, M., Khattak, S., Mascarich, F., Alexis, K., & Hutter, M. (2020). Graph‐based

subterranean exploration path planning using aerial and legged robots. Journal of Field Robotics, 37(8),

1363-1388.

[30] Sitaraman, S. R. (2022). Implementing AI applications in radiology: Hindering and facilitating factors of

convolutional neural networks (CNNs) and variational autoencoders (VAEs). Journal of Science and

Technology, 7(10).

[31] Stoian, A., Poulain, V., Inglada, J., Poughon, V., & Derksen, D. (2019). Land cover maps production with

high resolution satellite image time series and convolutional neural networks: Adaptations and limits for

operational systems. Remote Sensing, 11(17), 1986.

[32] Gollavilli, V. S. B. H. (2022). Securing Cloud Data: Combining SABAC Models, Hash-Tag

Authentication with MD5, and Blockchain-Based Encryption for Enhanced Privacy and Access Control.

International Journal of Engineering Research and Science & Technology, 18(3), 149-165.

[33] Romero, E., López-Romero, L., Domínguez-Álvarez, B., Villar, P., & Gómez-Fraguela, J. A. (2020).

Testing the effects of COVID-19 confinement in Spanish children: The role of parents’ distress,

emotional problems and specific parenting. International journal of environmental research and public

health, 17(19), 6975.

[34] Gudivaka, B. R. (2022). Real-Time Big Data Processing and Accurate Production Analysis in Smart Job

Shops Using LSTM/GRU and RPA. International Journal of Information Technology and Computer

Engineering, 10(3), 63-79.

[35] Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land cover classification using Google Earth Engine and

random forest classifier—The role of image composition. Remote Sensing, 12(15), 2411.

[36] Ganesan, T. (2022). Securing IoT business models: Quantitative identification of key nodes in elderly

healthcare applications. International Journal of Management Research & Review, 12(3), 78–94.

[37] Kang, Y., Yin, H., & Berger, C. (2019). Test your self-driving algorithm: An overview of publicly

available driving datasets and virtual testing environments. IEEE Transactions on Intelligent

Vehicles, 4(2), 171-185.

[38] Alavilli, S. K. (2022). Innovative diagnosis via hybrid learning and neural fuzzy models on a cloud-based

IoT platform. Journal of Science and Technology, 7(12).

[39] Landerl, K., Freudenthaler, H. H., Heene, M., De Jong, P. F., Desrochers, A., Manolitsis, G., ... &

Georgiou, G. K. (2019). Phonological awareness and rapid automatized naming as longitudinal

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

95
ISSN: 2456-4265
IJMEC 2023

predictors of reading in five alphabetic orthographies with varying degrees of consistency. Scientific

Studies of Reading, 23(3), 220-234.

[40] Nippatla, R. P., & Kaur, H. (2022). A secure cloud-based financial time series analysis system using

advanced auto-regressive and discriminant models: Deep AR, NTMs, and QDA. International Journal of

Management Research & Review, 12(4), 1–15.

[41] Shafin, R., Liu, L., Chandrasekhar, V., Chen, H., Reed, J., & Zhang, J. C. (2020). Artificial intelligence-

enabled cellular networks: A critical path to beyond-5G and 6G. IEEE Wireless Communications, 27(2),

212-217.

[42] Yalla, R. K. M. K., Yallamelli, A. R. G., & Mamidala, V. (2022). A distributed computing approach to

IoT data processing: Edge, fog, and cloud analytics framework. International Journal of Information

Technology & Computer Engineering, 10(1).

[43] Kurhanewicz, J., Vigneron, D. B., Ardenkjaer-Larsen, J. H., Bankson, J. A., Brindle, K., Cunningham, C.

H., ... & Rizi, R. (2019). Hyperpolarized 13C MRI: path to clinical translation in

oncology. Neoplasia, 21(1), 1-16.

[44] Nagarajan, H., & Khalid, H. M. (2022). Optimizing signal clarity in IoT structural health monitoring

systems using Butterworth filters. International Journal of Research in Engineering Technology, 7(5).

[45] Towsyfyan, H., Biguri, A., Boardman, R., & Blumensath, T. (2020). Successes and challenges in non-

destructive testing of aircraft composite structures. Chinese Journal of Aeronautics, 33(3), 771-791.

[46] Veerappermal Devarajan, M., & Sambas, A. (2022). Data-driven techniques for real-time safety

management in tunnel engineering using TBM data. International Journal of Research in Engineering

Technology, 7(3).

[47] Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., ... & Howard, D. (2019). Overall

methodology design for the United States national land cover database 2016 products. Remote

Sensing, 11(24), 2971.

[48] Kadiyala, B., & Kaur, H. (2022). Dynamic load balancing and secure IoT data sharing using infinite

Gaussian mixture models and PLONK. International Journal of Recent Engineering Research and

Development, 7(2).

[49] Linders, T. E. W., Schaffner, U., Eschen, R., Abebe, A., Choge, S. K., Nigatu, L., ... & Allan, E. (2019).

Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an

invasive tree affects ecosystem functioning. Journal of Ecology, 107(6), 2660-2672.

[50] Mamidala, V., Yallamelli, A. R. G., & Yalla, R. K. M. K. (2022, November–December). Leveraging

robotic process automation (RPA) for cost accounting and financial systems optimization — A case study

of ABC company. ISAR International Journal of Research in Engineering Technology, 7(6).

[51] El Chall, R., Lahoud, S., & El Helou, M. (2019). LoRaWAN network: Radio propagation models and

performance evaluation in various environments in Lebanon. IEEE Internet of Things Journal, 6(2),

2366-2378.

[52] Boyapati, S., & Kaur, H. (2022, July–August). Mapping the urban-rural income gap: A panel data

analysis of cloud computing and internet inclusive finance in the e-commerce era. ISAR International

Journal of Mathematics and Computing Techniques, 7(4).

http://ijmec.com/

International Journal of Multidisciplinary Engineering in Current Research - IJMEC

Volume 8, Issue 3, March-2023, http://ijmec.com/, ISSN: 2456-4265

96
ISSN: 2456-4265
IJMEC 2023

[53] Zhou, M., Chen, J., Liu, Y., Ackah-Arthur, H., Chen, S., Zhang, Q., & Zeng, Z. (2019). A method for

software vulnerability detection based on improved control flow graph. Wuhan University Journal of

Natural Sciences, 24(2), 149-160.

[54] Samudrala, V. K., Rao, V. V., Pulakhandam, W., & Karthick, M. (2022, September–October). IoMT

platforms for advanced AI-powered skin lesion identification: Enhancing model interpretability,

explainability, and diagnostic accuracy with CNN and Score-CAM to significantly improve healthcare

outcomes. ISAR International Journal of Mathematics and Computing Techniques, 7(5).

[55] Alasmary, H., Khormali, A., Anwar, A., Park, J., Choi, J., Abusnaina, A., ... & Mohaisen, A. (2019).

Analyzing and detecting emerging Internet of Things malware: A graph-based approach. IEEE Internet of

Things Journal, 6(5), 8977-8988.

[56] Ganesan, T., Devarajan, M. V., Yallamelli, A. R. G., Mamidala, V., Yalla, R. K. M. K., & Sambas, A.

(2022). Towards time-critical healthcare systems leveraging IoT data transmission, fog resource

optimization, and cloud integration for enhanced remote patient monitoring. International Journal of

Engineering Research and Science & Technology, 18(2).

[57] Wang, W., Zhang, Y., Sui, Y., Wan, Y., Zhao, Z., Wu, J., ... & Xu, G. (2020). Reinforcement-learning-

guided source code summarization using hierarchical attention. IEEE Transactions on software

Engineering, 48(1), 102-119.

[58] Devi, D. P., Allur, N. S., Dondapati, K., Chetlapalli, H., Kodadi, S., & Perumal, T. (2022). Neuromorphic

and bio-inspired computing for intelligent healthcare networks. International Journal of Information

Technology & Computer Engineering, 10(2).

[59] Wang, L., Wang, C., & Wang, H. (2022). Improved scheduling algorithm for synchronous data flow

graphs on a homogeneous multi-core systems. Algorithms, 15(2), 56.

[60] Dondapati, K., Deevi, D. P., Allur, N. S., Chetlapalli, H., Kodadi, S., & Perumal, T. (2022). Strengthening

cloud security through machine learning-driven intrusion detection, signature recognition, and anomaly-

based threat detection systems for enhanced protection and risk mitigation. International Journal of

Engineering Research and Science & Technology, 18(1).

[61] Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., & Lu, J. (2020). Topological graph convolutional

network-based urban traffic flow and density prediction. IEEE transactions on intelligent transportation

systems, 22(7), 4560-4569.

[62] Narla, S. (2022). Big data privacy and security using continuous data protection data obliviousness

methodologies. Journal of Science and Technology, 7(2).

[63] Liu, Z., Qian, P., Wang, X., Zhuang, Y., Qiu, L., & Wang, X. (2021). Combining graph neural networks

with expert knowledge for smart contract vulnerability detection. IEEE Transactions on Knowledge and

Data Engineering, 35(2), 1296-1310.

[64] Ubagaram, C., Mandala, R. R., Garikapati, V., Dyavani, N. R., Jayaprakasam, B. S., & Purandhar, N.

(2022, July). Workload balancing in cloud computing: An empirical study on particle swarm

optimization, neural networks, and Petri net models. Journal of Science and Technology, 7(07), 36–57.

[65] Alzahrani, A. O., & Alenazi, M. J. (2021). Designing a network intrusion detection system based on

machine learning for software defined networks. Future Internet, 13(5), 111.

http://ijmec.com/

