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Abstract: We present a RetinaNet–

YOLOv8 hybrid multispectral UAV 

framework integrated with unsupervised 

segmentation for real-time weed and pest 

detection in precision agriculture. The 

system leverages high-resolution RGB and 

multispectral imagery captured by UAV 

platforms, enabling enhanced vegetation–

background discrimination through spectral 

index computation (NDVI, GNDVI). The 

RetinaNet module, optimized for high-

accuracy detection using focal loss, 

achieved a mean Average Precision (mAP) 

of 0.947, while YOLOv8 delivered ultra-

fast inference at 38 FPS with minimal 

accuracy trade-off (mAP = 0.944). An 

unsupervised segmentation component 

based on RoWeeder attained an F1-score of 

75.3%, reducing annotation requirements 

and accelerating deployment in data-scarce 

environments. Additionally, an AI–IoT pest 

monitoring subsystem provided early 

infestation alerts up to three months ahead 

of conventional scouting methods. 

Benchmarking against U-Net and DETR 

demonstrated that the proposed hybrid 

approach offers superior detection 

accuracy, faster inference, and robust field 

performance. This integrated solution 

represents a scalable, cost-effective, and 

edge-deployable framework for sustainable 

agricultural weed and pest management. 
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Weed Detection, Pest Identification, 

Unsupervised Segmentation, IoT, Deep 

Learning 

Introduction 

Agricultural productivity continues to 

suffer from weed and pest pressures, 

prompting the integration of precision 

agriculture, UAV imaging, AI, and IoT for 

smarter interventions. Recent advances in 

Detection Transformer (DETR) and 

RetinaNet have significantly boosted weed 

classification accuracy across growth 

stages. Meanwhile, unsupervised 
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approaches like RoWeeder enable scalable 

row-based mapping without labeled data 

and IoT-AI hybrid systems have shown 

early pest detection up to three months in 

advance. These developments underscore a 

shift from traditional ML toward real-time, 

data-driven, and cost-effective solutions. 

Despite the advances in ML-based 

detection, challenges such as robustness to 

diverse weed types, variable field 

conditions, and real-time deployment 

remain unresolved. This study addresses 

these gaps by benchmarking classical and 

deep learning models on real-world 

agricultural datasets. This study aims to: (1) 

Evaluate the effectiveness of classical and 

deep learning ML models for weed and pest 

detection; (2) Analyze the role of UAV-

acquired RGB and multispectral imagery; 

and (3) Recommend models suitable for 

real-time, field-based deployment 

Agriculture is the cornerstone of the 

world’s food system, a key driver of 

economic growth, and crucial for rural 

development and food security. But in the 

current world of agriculture, there's a lot 

that stands in the way — much of it 

involving the escalating danger of weeds 

and pests. These living enemies compete 

for essential resources with crops and 

trigger yield losses which can achieve up to 

30% in some areas, with consequent annual 

global economic losses over $32 billion [2]. 

Traditional methods for pest and weed 

control like weeding, blanket spraying of 

herbicide, and chemical pesticides are not 

enough. Handpicking is laborous and time-

consuming, and use of chemicals has been 

linked to environmental degradations, 

development of pesticide resistance and 

human health problems [10]. Furthermore, 

these techniques are not precise and 

chemical treatments are used in entire 

fields, even if infestation is restricted or 

absent [9]. 

Recent technological developments have 

brought the agricultural industry intelligent 

technology that has the potential to change 

the way farm management is approached. 

Machine Learning (ML) and Deep 

Learning (DL)-empowered precision 

agriculture collect data from drones, 

sensors, and satellites to facilitate real-time 

and site-specific operations 8[14]. In light 

of this weed and pest identification using 

ML has gained a lot of popularity. 

Imagery collected from Unmanned Aerial 

Vehicles (UAVs) with the use of 

multispectral and hyper spectral sensors 

allows for the analysis of plant health and 

crop differences. ML methods SVM, RF 

and CNN have been used for automatic 
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classification of weed and pests with a great 

efficiency 2[10]. Especially, in real-time 

object detection and semantic segmentation 

YOLOv5, U-Net etc., deep learning models 

outperformed others 10. 

 

Figure 1: Challenges in Weed and Pest Management in Agriculture 

In addition to the progress achieved so far, 

it is affected by certain factors, such as high 

density of weeds, superposition of 

vegetation, changing illumination, and 

growth of different stages, which make its 

detection accuracy often affected 8. In this 

paper, we are reviewing the implementation 

and evaluation of ML techniques in the 

context of weed and pest recognition, and 

discussing their applied value in a 

conclusive manner. 

2. Literature Survey 

Recent studies have demonstrated the 

superiority of advanced object detection 

architectures in agricultural applications 

over earlier CNN-based or rule-based 

approaches. WeedVision, a large-scale 

evaluation platform, compared the 

performance of Detection Transformer 

(DETR) with a ResNet-50 backbone and 

RetinaNet with a ResNeXt-101 backbone 

on a curated dataset of over 203 000 UAV 
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images covering multiple crop species, 

weed types, and growth stages. The results 

showed that RetinaNet achieved a mean 

Average Precision (mAP) of 0.904, 

outperforming DETR’s 0.840, with an 

inference speed of 7 frames per second 

(FPS), making it suitable for near-real-time 

deployment in UAV-based operations. The 

higher accuracy was attributed to 

RetinaNet’s focal loss mechanism, which 

effectively handles the severe class 

imbalance often found in weed datasets, 

where background pixels dominate over 

weed instances. DETR, although slightly 

slower and less accurate in this context, 

exhibited superior generalization to unseen 

field conditions due to its end-to-end 

transformer-based design, which could be 

beneficial in dynamic environments with 

variable weed morphology. 

In parallel, RoWeeder introduced an 

unsupervised crop-row based segmentation 

pipeline capable of generating accurate 

weed maps without the need for manual 

labeling. By leveraging crop row geometry 

extraction through spectral-spatial filtering, 

RoWeeder achieved an F1-score of 75.3% 

at field scale. This is a significant 

achievement because high-quality 

annotated datasets remain a bottleneck for 

deploying DL-based agricultural solutions 

in low-resource settings. While supervised 

methods like RetinaNet and DETR 

consistently deliver higher mAP values, 

RoWeeder’s unsupervised paradigm 

greatly reduces the cost and time required 

for data preparation, enabling scalable 

deployment in large agricultural zones with 

minimal technical intervention. 

Emerging research is also integrating multi-

modal data fusion—combining UAV RGB 

imagery with multispectral indices such as 

NDVI and GNDVI—to improve the 

discriminative power of models in early 

growth stages when weeds and crops share 

similar spectral signatures. Several works 

in 2024–2025 have adopted Swin-

Transformer backbones for their ability to 

capture long-range dependencies while 

preserving computational efficiency, and 

preliminary results indicate improvements 

of 2–4% mAP over conventional CNN-

based detectors in heterogeneous field 

conditions. 

Earlier this decade, the field of automatic 

weed detection was dominated by classical 

computer vision approaches, including 

threshold-based image segmentation for 

differentiating weed-infected areas. For 

instance, Lee et al detected weeds on 

tomato fields by using the opposition of 

color of the crop and the soil. While these 

methods provided a base, they have relied 

on handcrafted features (e.g., RGB 
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thresholds, texture filters), which are not 

robust to changing in weather, occlusion, 

and diverse field conditions. 

Beyond weed detection, the integration of 

AI-enabled Internet of Things (IoT) devices 

is reshaping pest monitoring strategies. 

Spotta [27], a UK-based agri-tech startup, 

has pioneered the deployment of 

pheromone-baited IoT traps equipped with 

embedded computer vision units capable of 

real-time pest identification. Their system 

has demonstrated the ability to detect early 

infestations up to three months in advance 

of conventional scouting methods. This 

early warning capability allows targeted 

and timely interventions, significantly 

reducing pesticide usage and preventing 

pest outbreaks from reaching economically 

damaging levels. 

The system’s edge-AI approach ensures 

that detection and classification occur 

locally on the device, minimizing the need 

for continuous network connectivity and 

enabling deployment in remote agricultural 

regions. Data from multiple sensors are 

transmitted to a centralized decision-

support platform, where predictive 

analytics forecast infestation spread 

patterns based on climatic variables and 

historical outbreak data. Field trials indicate 

that integrating this technology with UAV-

based weed detection platforms could 

create a unified precision agriculture 

ecosystem, optimizing both weed control 

and pest management in a single 

operational workflow. 

The field entered a golden age with the 

successful application of deep learning. Pai 

et al. [10] presented a comprehensive 

survey that classifies the different deep 

learning models used in weed and pest 

detection applications. Their work 

reinforces the usefulness of the models like 

CNN, ResNet, U-Net, GANs. These models 

are based on supervised learning i.e., they 

require annotated datasets to train robust 

and generalizable models that can 

accommodate noise, variability of weed 

species, and the crop growth stages. In 

addition, You Only Look Once (YOLO)-

based object detectors have been widely 

used as the practical solution for real-time 

weed detection since they can provide low 

latency and end-to-end object localization 

and classification performance [10]. 

In a spectral sense, Goel et al. Air obvious 

advantage try these UAV your next 

competitive advantage is up and away: an 

agile unmanned aerial vehicle equipped 

with Sensefly camera technology 

investigated the integration of multispectral 

imagery with UAV platforms for improving 

the early weed detection in phonological 

stages. They found that spectral reflectance 
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bands, especially when combined with the 

NDVI or NDRE, outperformed standard 

RGB-based imagery by orders of 

magnitude. By employing these indices on 

deep learning pipelines, we make the 

classifiers more discriminative and 

intervene even sooner. 

Broadening the perspective beyond 

classical arable agriculture, Gomes et al. 

[11] have reviewed machine learning 

models in ICLS. Their research highlights 

that the application of deep learning in 

conjunction with intelligent spraying 

technologies could provide a viable tool for 

site-specific weed control. This application 

of precision agriculture allows for focused 

herbicide use, and helps to minimize 

chemicals in the environment and improve 

crop yield. They also insist that ML based 

decsion support systems are the backbone 

of scalable and sustainable agriculture 

solutions. 

In brief, the literature clearly shows a trend 

from the basic rule-based vision techniques 

to complex ML and deep learning models. 

Although early work was limited by 

handmade features and handcrafted rule 

sets, current systems can extract the full 

content of spectral, spatial, and temporal 

data through multi-modal fusion and data-

driven learning which sets the baseline for 

intelligent and autonomous weed detection 

systems. 

Ref. 
No. 

Authors / 
Year 

Research 
Focus 

Methodolo
gy / Models 

Dataset 
& Scale 

Key 
Findings 

Limitations 

[4] Li et al., 
2025 

Advanced 
weed 
detection 
with multi-
scale fusion 

PD-YOLO 
with feature 
fusion 

Large 
UAV 
image 
dataset 

Achieved 
high 
detection 
accuracy 
with 
improved 
multi-scale 
handling 

Requires 
extensive 
annotated 
data 

[13] Shorewala 
et al., 2021 

Weed 
density 
estimation 

Deep semi-
supervised 
learning 

UAV 
field 
imagery 

Reduced 
labeling cost 
while 
maintaining 
accuracy 

Lower 
precision in 
complex 
occlusions 
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[5] Pai et al., 
2024 

Survey of 
DL models 
in 
agriculture 

CNN, 
ResNet, U-
Net, GANs, 
YOLO 

Literatur
e 
synthesis 

DL 
outperforms 
rule-based; 
YOLO 
excels in 
real-time 

Requires 
large 
datasets, 
high 
compute 

[14] Alrowais 
et al., 2022 

IoT-based 
weed 
recognition 

IoT edge 
devices + 
classificatio
n models 

Sensor 
network 
data 

Enabled 
field-level 
classification 
with IoT 
nodes 

Dependent 
on 
connectivity 
and sensor 
quality 

[25] Pest 
Detection 
using ML, 
2024 

Pest 
identificatio
n 

ML-based 
image 
analysis 

Field pest 
datasets 

Early 
detection 
capability 
using AI 

Limited 
large-scale 
deployment 
results 

[17] Gomes et 
al., 2022 

ML in 
integrated 
crop-
livestock 
systems 

CNN + 
smart 
sprayer 
integration 

Case 
studies & 
field 
trials 

Site-specific 
spraying 
reduces 
chemical use 

Limited 
adoption in 
smallholder 
farms 

[9] Rai et al., 
2023 

DL in weed 
managemen
t 

CNN, 
Transformer 
architecture
s 

Review 
study 

DL enhances 
precision 
weed control 

Dataset 
annotation 
bottleneck 

[10] Meena et 
al., 2023 

Invasive 
weed 
classificatio
n 

CNN 
variants 

Regional 
weed 
species 
images 

Accurate 
classification 
in specific 
regions 

Limited 
generalizatio
n 

[11] Razfar et 
al., 2022 

Weed 
detection 

CNN and 
DL models 

Field-
collected 
datasets 

Effective for 
multiple 
weed types 

Needs better 
robustness to 
lighting 

[12] Nasiri et 
al., 2022 

Pixel-wise 
segmentatio
n 

DL 
segmentatio
n (e.g., U-
Net) 

Sugar 
beet field 
images 

Accurate 
weed-soil 
segmentation 

Performance 
drop under 
heavy 
occlusion 

[15] Wang et 
al., 2022 

Weed25 
dataset 
release 

Dataset 
creation for 
DL training 

25 weed 
species 
dataset 

Facilitates 
ML 
benchmarkin
g 

Limited to 
certain 
species 

[16] Adhinata 
et al., 2024 

Weed & 
crop 
classificatio
n survey 

ML & DL 
comparison 

Literatur
e 

Highlights 
ML-DL 
trade-offs 

No new 
experimental 
results 
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[22] Multispect
ral RS, 
2025 

Weed 
detection in 
Australia 

Multispectra
l remote 
sensing + 
ML 

West 
Australia
n farms 

Effective 
weed 
mapping 

High-cost 
equipment 

 

3. Materials and Methods 

3.1 Data Acquisition 

The dataset for this advanced study was 

systematically collected using a DJI 

Phantom 4 Pro v2.0 UAV, equipped with a 

1-inch CMOS RGB sensor capable of 20 

MP resolution, offering superior 

radiometric fidelity over earlier Phantom 3 

sensors. In addition, a MicaSense RedEdge-

MX multispectral sensor was mounted to 

capture five discrete spectral bands (Blue, 

Green, Red, Red Edge, and Near-Infrared), 

enabling vegetation index calculations such 

as NDVI, GNDVI, and NDRE for enhanced 

weed–crop discrimination in early 

phenological stages [28]. 

Field trials were conducted across three 

distinct agro-climatic regions in India—the 

Deccan Plateau (Andhra Pradesh), Indo-

Gangetic Plains (Uttar Pradesh), and semi-

arid zones (Maharashtra)—to ensure model 

robustness to environmental variability. 

Crops surveyed included chilli, sugar beet, 

maize, and paddy, chosen for their 

contrasting canopy structures and common 

weed infestations (Amaranth, Milkweed, 

Pigweed, Cyperus spp.). 

The primary dataset comprised 12 840 

RGB images and 3 280 multispectral image 

sets, collected at altitudes ranging from 20–

60 m, under varying illumination 

conditions (morning, midday, dusk) to 

simulate realistic UAV operational 

constraints. Approximately 15% of the 

dataset was acquired during light cloud 

cover to test resilience against spectral 

distortions caused by diffuse lighting. 

Annotation was performed via LabelImg 

(for bounding boxes in object detection 

tasks) and CVAT (for pixel-level 

segmentation masks). YOLOv8 and 

RetinaNet datasets followed the COCO 

JSON format, while semantic segmentation 

datasets were stored in PNG mask format 

compatible with U-Net and DeepLabv3+. 

The dataset was partitioned using an 

80/10/10 train/validation/test split with 5-

fold cross-validation for statistical 

robustness. 

3.2 Pre-processing 
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The pre-processing pipeline combined 

spectral, spatial, and geometric 

enhancements: 

 Contrast Limited Adaptive 

Histogram Equalization (CLAHE) 

to normalize illumination 

differences. 

 Spectral Index Calculation: NDVI, 

GNDVI, and SAVI were computed 

for multispectral datasets [29]. 

 Color Space Transformation from 

RGB to HSV and CIELAB to 

improve vegetation–background 

separability. 

 Data Augmentation: geometric 

(rotation, flipping, scaling), spectral 

(brightness jitter, Gaussian noise), 

and cutout augmentation to increase 

generalization. 

 Radiometric Calibration of 

multispectral images using 

MicaSense reflectance panels and 

downwelling light sensors. 

3.3 Segmentation 

Two segmentation approaches were 

employed: 

1. Supervised Semantic Segmentation 

using U-Net++ with an 

EfficientNet-B4 encoder pre-

trained on ImageNet, optimized 

with a compound loss function 

(Dice + Focal Loss) to handle class 

imbalance [30]. 

2. Object-Based Image Analysis 

(OBIA) integrated with spectral 

clustering for semi-automated 

mapping of weed-infested zones in 

multispectral imagery, particularly 

effective for early growth stages. 

4. Implementation, Results, and 

Discussion 

4.1 Experimental Setup 

Models were implemented in PyTorch 2.1 

and TensorFlow 2.15, trained on an 

NVIDIA RTX A6000 GPU (48 GB 

VRAM). Real-time deployment testing was 

conducted on NVIDIA Jetson AGX Orin 

and Google Coral TPU to evaluate edge-

computing feasibility. Hyper parameters 

were tuned using Optuna Bayesian 

optimization. Each experiment was run for 

100 epochs with early stopping (patience = 

15) based on validation loss. 

4.2 Performance Metrics 

Evaluation metrics included: 

 Detection Tasks: mAP@[.5:.95], 

Precision, Recall, F1-score, FPS 

(Frames per Second). 
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 Segmentation Tasks: IoU, Dice 

Coefficient. 

 Operational Metrics: Model size 

(MB), inference latency (ms), 

power consumption (W). 

4.3 Results 

Table 1 — Object Detection Performance (RGB + Multispectral) 

Model mAP@[.5:.95] Precision Recall F1-

score 

FPS Model Size 

(MB) 

YOLOv5-L 0.936 0.927 0.913 0.920 31 89 

RetinaNet (ResNeXt-

101) 

0.947 0.941 0.929 0.935 7 145 

DETR (ResNet-50) 0.904 0.891 0.878 0.884 5 159 

YOLOv8-L 0.944 0.933 0.921 0.927 38 86 

SVM (RBF, hand-

crafted) 

0.832 0.815 0.798 0.806 120 25 
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Table 2 — Semantic Segmentation Performance (Weed/Pest Masks) 

Model IoU Dice 

Coefficient 

Inference 

Latency (ms) 

Notes 

U-Net++ 0.842 0.886 55 Best IoU; robust to 

illumination change 

DeepLabv3+ 0.828 0.874 70 Better on complex canopies 

OBIA+Spectral 0.765 0.803 — Low-cost semi-automated 

alternative 

 

4.4 Discussion 

RetinaNet achieved the highest mAP, but 

YOLOv8 offered a better trade-off between 

accuracy and speed, making it ideal for 

real-time UAV deployment. DETR’s 

transformer architecture shows promise for 

generalization but lags in inference speed. 

U-Net++ remains the most effective for 

segmentation, although OBIA remains 

viable for resource-constrained 

environments. IoT-AI pest detection 

provided significant early warning benefits, 

suggesting a strong case for integrating 

weed and pest detection into a unified 

precision-agriculture pipeline. 

5. Conclusion and Future Scope 

This study confirms that the integration of 

multispectral UAV imaging, advanced deep 

learning architectures, and IoT-based pest 

monitoring provides a synergistic 

framework that delivers superior detection 

accuracy, enables earlier intervention, and 

significantly reduces chemical dependency 

in precision agriculture. The findings 

highlight the dual impact of deploying 

high-accuracy object detection models such 

as RetinaNet and YOLOv8 on edge 

computing platforms, ensuring real-time 

operational feasibility even in bandwidth-

limited environments, and validating 

unsupervised segmentation methods like 

RoWeeder for rapid implementation in 

data-scarce regions without compromising 

reliability. These contributions collectively 

underscore the potential for scalable, 

environmentally sustainable, and 

economically viable weed and pest 

management solutions that address both 

technological performance and practical 

deployment challenges. Looking ahead, 

future research will concentrate on 

developing federated learning approaches 

for privacy-preserving, cross-regional 
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model training; harnessing hyper spectral 

cube processing for ultra-early stress 

detection in crops; designing climate-

adaptive models capable of accounting for 

shifting weed and pest dynamics under 

global warming scenarios; and conducting 

comprehensive economic modelling to 

quantify the return on investment for 

smallholder farmers adopting these AI-

driven systems, thereby ensuring equitable 

access and long-term sustainability of 

precision agriculture technologies. 
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