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  Abstract: 

This study explores a real-time stress detection 
system designed for hazardous operations, aiming 
to enhance performance and reduce stress. 
Traditional machine-learning models struggle with 
stress detection due to individual differences and the 
time-series nature of physiological signals. To 
address this, a personalized model was developed, 
selecting specific features for training. The system 
was tested for real-time deployment using 
physiological data—heart rate, blood pressure, 
electrodermal activity, and respiration—collected 
from participants performing tasks with varying 
stress levels.  

A comparison of classifiers, including Support 
Vector Machine, Decision Tree, Random Forest, 
and an Approximate Bayes (A Bayes) classifier, 
showed that personalized models outperform 
generalized ones in classifying stress levels. Results 
indicate that model accuracy varies with feature 
selection, window size, and task type, with blood 
pressure emerging as a key indicator. The study 
highlights the advantage of personalized models in 
stress detection and their potential for future 
applications.  

Keywords — Stress monitoring, AI-driven analysis, 
biometric sensors, immersive simulations, astronaut 
training.  

 

I.  INTRODUCTION   

Stress significantly impacts an individual’s response 
in emergencies, affecting decision-making, 
situational awareness, and cognitive function[1]. 
Effective stress management is crucial to preventing 
performance decline and mission failure[2]. Machine 
learning-based stress detection offers potential 
solutions but faces several challenges[3], [5].  
First, stress responses vary among individuals, 
making it difficult to generalize models[18]. 
Personalized stress detection may be more effective 
than generalized approaches. Second, physiological 
signals exhibit temporal dependencies that violate 
common machine learning assumptions, leading to 

biased results[10],[12]. Third, traditional machine 
learning algorithms approximate stress probabilities 
but lack a benchmark for accuracy [6],[7]. Bayes’ 
theorem provides an optimal classification 
framework by estimating stress levels using 
empirical density distributions[7]. Machine learning 
models can improve reliability by incorporating 
multivariate kernel density estimators to account for 
physiological dependencies.  

For real-time stress monitoring, efficient analysis of 
physiological time-series data is needed[14]. 
Adaptive training environments can dynamically 
adjust scenarios based on stress responses[4],[15]. 
Multivariate kernel density estimators can improve 
detection accuracy in datasets with repeated 
physiological measurements by minimizing 
uncertainty[11]. This study evaluates personalized 
stress detection based on objectivity, reliability, and 
validity. It aims to determine if stressors create 
distinct physiological responses for classification, 
assess the reliability of a time-series interval 
approach across various conditions, and compare 
supervised classifiers with an Approximate Bayes (A 
Bayes) classifier [7], [10].  
As part of broader VR training development, this 
research tests a time-series interval-based model 
using physiological data from stress-inducing 
tasks[6]. It validates classification accuracy and 
proposes an architecture for real-time stress 
monitoring. Post-hoc evaluations of machine 
learning pipelines will enable practical 
implementation in adaptive training environments for 
improved stress detection and management[4],[14] 
  

II. RELATED WORK 

In today's digital era, sentiment analysis has become 
essential for understanding customer opinions and 
public perception. As a subfield of Natural Language 
Processing (NLP), it helps analyse textual data from 
sources like social media, product reviews, and 
online discussions to classify sentiments as positive, 
negative, or neutral. Businesses, policymakers, and 
researchers use sentiment analysis to enhance 
customer satisfaction, monitor brand reputation, gain 
competitive insights, and make informed decisions.  
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Machine learning plays a crucial role in automating 
sentiment analysis, reducing dependence on manual 
efforts. Supervised learning methods, including 
Naïve Bayes, Support Vector Machines (SVM), and 
Random Forest, classify sentiments based on labelled 
datasets. Deep learning approaches, such as 
Recurrent Neural Networks (RNNs) and 
Transformer-based models like BERT, capture 
contextual meanings for improved accuracy. 
Lexicon-based techniques rely on predefined word 
dictionaries to analyse sentiments effectively [6-8] 

This study aims to explore and evaluate machine 
learning approaches for sentiment analysis. It focuses 
on comparing the effectiveness of algorithms like 
Naïve Bayes, SVM, Random Forest, and deep 
learning models. Additionally, it examines the impact 
of text pre-processing techniques, including 
tokenization, stemming, and stop-word removal, on 
classification accuracy. The role of feature extraction 
methods, such as TF-IDF, word embeddings, and 
deep learning representations, is also analysed. 
Furthermore, the study evaluates the efficiency, 
accuracy, and computational cost of different 
sentiment analysis models[6-8]  

Sentiment analysis has widespread applications 
across industries, including e-commerce, 
healthcare, finance, politics, and entertainment. It 
enhances product recommendations, improves 
patient feedback systems, tracks market sentiment, 
assesses public opinion, and analyses audience 
reactions.  

  

III. RESEARCH METHODOLOGY 

  

  

Fig.1 Stress Detection and 

Classification[1] 

 Participants: 

 Aggregate of 41 healthy individualities (34 males, 
7 ladies) shared, with an average age of 20.9 ± 6.5 
times (range 18 – 41). Actors were assigned to a 
VR spaceflight exigency fire task (N = 27) or a 
laboratory- grounded N- reverse task (N = 14). The 
demographic breakdown included 76 European 
American/ White, 12 Asian or Asian American, 
and 7 Hispanic or Latino.   

 Test Design: 

The study featured two task types with three 
stressor situations. The VR- ISS task dissembled a 
spaceflight exigency fire, taking actors to detect 
and extinguish a fire. Stress situations were 
manipulated using voice adverts  

(low), admonitions, bank, and flashing 
lights(medium), and boosted goods across all 
modules(high).    

The N- reverse task assessed cognitive cargo by 
taking actors to recall the position of a multi 
coloured square displayed n way before. 1- 
reverse(low), 2- reverse(medium), and 4- 
reverse(high) conditions were used to control task 
difficulty.   

 Stress dimension:  
Actors rated their stress using the Free Stress Scale 
(0 – 100) after completing trials. This measure 
assured stressor conditions were effective.   

Procedure: 
The trial lasted 120 twinkles. Actors handed 
informed concurrence, completed a demographic 
check, and passed VR navigation training. 
Physiological detectors were attached for birth 
recordings before assigning actors to VR- ISS or N-
aft tasks.   

VR- ISS actors entered a 20 – 30- nanosecond tutorial 
covering VR navigation and exigency procedures. N- 
reverse actors passed a brief tutorial explaining task 
mechanics.    

Trials included low, medium, and high stress 
conditions, with five- nanosecond breaks between 
each. The Free Stress Scale was administered after 
the final trial.    

 Stress Discovery System Overview  : 
A machine literacy channel was developed for stress 
bracket using data collection, pre-processing, point 
birth, selection, and bracket.   

Physiological data were recorded via multiple 
detectors, and time- series bracket was used for point 
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birth. Dimensionality reduction meliorated features, 
and supervised literacy models classified stress 
situations.   

 For real- time stress discovery, the system enabled 
nonstop monitoring and adaptive responses. A 
resembling processing armature allowed real- time 
bracket, with a 30-alternate buffering period icing 
smooth operation.   

A separate party group tested the real- time system in 
an adaptive VR stress training terrain. The system 
acclimated stressor intensity stoutly, perfecting 
stoner training. Cross validation verified trust ability, 
and quiescence testing assured real- time operation.   

 Data Collection & Pre-processing: 

Four physiological signals were recorded using the 
Biopic , MP150 system, Electrocardiogram (ECG) 
(via ECG100C module), Electrodermal exertion 
(EDA) (indicator and middle fritters), Respiration 
(RSP) (Bluetooth- transmitted for mobility), Non-
invasive blood pressure (NIBP) (oscillometric cutlet 
cuff) ECG and respiration were tried at 125 Hz. Pre-
processing removed movement vestiges, power line 
hindrance, and electromagnetic noise. Pollutants 
included IIR band- pass (NIBP), electrical noise 
junking (ECG), and alternate- order Butterworth low- 
pass (EDA).  G. Feature Extraction point birth 
captured stress- related physiological changes. Heart 
rate variability (HRV) features included root mean 
forecourt of consecutive differences (RMSSD) and 
chance of peak- to- peak intervals exceeding 50 ms 
(pNN50). Lower values indicated stress[3],[9].    
Respiration rate, systolic/ diastolic blood pressure, 
and electrodermal exertion (EDA) factors (alcohol 
and phasic) were uprooted. Time- series features 
(e.g., absolute energy, autocorrelation, entropy) were 
reckoned using Ts fresh and Catch22 toolsets.    

 Algorithms  

 Decision Tree  : 

Decision trees are popular classifiers due to their 
interpretability and ease of use. They recursively 
resolve the dataset grounded on crucial attributes 
to classify instances. However, a splint knot is 
created, If all cases in a subset belong to the same 
class. else, a test trait is chosen, and branches are 
formed for each outgrowth. This process repeats 
for each subset. While decision trees can overfit 
complex data, ways like pruning help ameliorate 
delicacy and conception.   

 Naive Bayes:   

Naive Bayes is a probabilistic classifier grounded 
on Bayes’ theorem. It assumes point independence 

and is effective for large, high- dimensional 
datasets. Generally used in spam discovery, 
sentiment analysis, and document bracket, it offers 
fast training and reasonable delicacy. Though its 
independence supposition is unrealistic, it still 
performs well. Tools like Weka, Tanagra, Orange, 
and RapidMiner are used to compare Naive Bayes 
with styles like logistic retrogression and SVM for 
better perceptivity[7].   

Random Forest :  

Random Forest is an ensemble system that 
combines multiple decision trees to ameliorate 
vaticinator delicacy and reduce overfitting. For 
bracket, it uses maturity voting, and for 
retrogression, it pars prognostications. Introduced 
by Tin Kam Ho and meliorated by Bierman and 
Cutler, Random timbers are known for their 
robustness across diligence. Though generally 
effective, grade boosting can outperform it in 
certain cases[7]   

Support Vector Machine (SVM): 

SVM is a discrimination classifier that aims to find 
the optimal boundary ( hyperplane) separating 
classes in a point space. Unlike generative models, 
SVM focuses only on class boundaries and is 
effective in high- dimensional spaces. It requires 
lower data and calculation, making it suitable for 
tasks where only bracket( not full probability 
distributions) is demanded.   

Point Selection   

A cold-blooded approach named applicable 
features. Univariate point selection (UFS) ranked 
features using ANOVA F- values, while 
successional point selection (SFS) iteratively 
meliorated them.   

To help data leakage, point selection was applied 
only to training data, validated using 20 unseen test 
data.    

 Generalized Approach & Data Analysis Summary   

A generalized model was compared with a 
substantiated model using a leave- one- subject- 
eschewal confirmation approach. Test data were 
formalized using training statistics.    

The A Bayes classifier was compared with Support 
Vector Machine (SVM), Decision Tree, and 
Random Forest models in MATLAB. Performance 
was assessed using10foldcross-validation and 
holdout confirmation[7]   

Metrics included delicacy, perfection, recall, F1- 
score, and particularity. Statistical analyses used 
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RM- ANOVA with Bonferroni correction, and 
Cohen’s d measured effect sizes.  

   

   Fig.2 Stress detection implemented as a 

real-time[3].  

IV. RESULTS AND DISCUSSION 

Subjective Stress Manipulation  

Stress levels significantly impacted subjective 
stress ratings in both VR-ISS (F(2,90) = 102, p < 
.001, d = 3.02) and N-back tasks (F(2,24) = 47.5, p 
< .001, d = 3.98). Pairwise comparisons confirmed 
significant differences across stress levels (p < 
.001). In the N-back task, stress was highest in 4-
Back compared to 1-Back (p < .001) and 2-Back (p 
< .001), with 2-Back significantly higher than 
1Back (p = .018).  

 Machine Learning Results  

Physiological data from both tasks were analysed 
using Sequential Feature Selection (SFS). The 
likelihood ratio imbalance degree (LRID) indicated 
higher class imbalance in VR-ISS (46%) compared 
to N-back (9.5%). F1-score was used as the primary 
performance metric, consistent across different 
epoch window sizes (10–40 seconds).  

  

Fig.3 The approximate Bayes for stress 

level classification.  

  

        TABLE 1. Details of the multiclass datasets, 

M (± SD).  

 

 TABLE 2. Number of features selected by SFS   

for each task.  

 

 Classifier Performance and Validation  

The highest F1-score for VR-ISS was 94% at 30 
seconds (10-Fold) and 79% at 40 seconds (holdout). 
For N-back, it was 96% at 40 seconds (10-Fold) and 
81% at 40 seconds (holdout). Random Forest 
performed best in N-back (98% at 30 seconds), 
while A Bayes achieved the highest F1-score (94% 
at 30 seconds) for VR-ISS [14-15] 
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E. Personalized vs. Generalized Approach  

In leave-one-subject-out (LOSO) validation for VR-
ISS, the best accuracy (62%) was achieved with 
Random Forest at a 30-second window [14-15] 

Following are the accuracies of following machine 
learning models in both tabular form and bar chart[6-
8].   

  Table 3: Accuracies of Models  

                        

 The personalized stress detection system selected 
time-series features per individual, trained models, 
and classified stress levels in real time. Stress levels 
induced by VR-ISS and N back tasks were validated 
using questionnaires and physiological data. 
Classifier reliability was tested across tasks, window 
sizes, and validation methods, with better 
performance seen in the simpler N-back task and 
shorter windows (10–20 sec).  F1-scores addressed 
data imbalance, showing 82–94% (VRISS) and 79–
96% (N-back) in cross-validation. The A Bayes 
classifier, using kernel density estimates, 
outperformed or matched traditional models, 
achieving 94% F1 at a 30-sec window. Personalized 
models outperformed generalized ones, making them 
effective for real-time stress detection. A Bayes, 
Random Forest, and SVM yielded higher F1-scores 
for VR-ISS, with A Bayes achieving 94% (cross-
validation) and SVM 84% (holdout). For N-back, 
Random Forest had the best F1-score (98% cross-
validation), while Decision Tree topped holdout 
(84%). Classifier performance varied by task due to 
differences in task complexity and data 
characteristics. N-back, being a controlled cognitive 
task, consistently showed higher F1-scores than the 
more complex VR-ISS. For example, Random Forest 
achieved 98% (N-back) vs. 90% (VR-ISS) with the 
same settings. ABayes showed similar trends with 
slightly better results on N-back across both 
validation methods. This suggests the system is 
robust across task types. Personalized models 
outperformed generalized ones (82% vs. 62% on VR-
ISS), highlighting their ability to adapt to individual 
physiological variations. Generalized models 
struggled with feature variability, but larger and more 

uniform datasets could improve their performance.  
Compared to other studies, this system achieved some 
of the highest reported multi-class stress detection 
scores, especially with N-back. However, many 
studies lacked F1score reporting and used generalized 
models, making direct comparisons difficult. The 
study’s use of the SFS wrapper for feature selection 
further boosted accuracy, emphasizing the 
importance of model personalization and evaluation 
choices. The stress detection is more effective when 
using personalized models rather than generalized 
ones. Key features like SBP, DBP, and EDA were 
commonly selected, while HRV features were often 
excluded due to individual variability. Longer time 
windows shifted the focus to slower signals, and 
shorter windows favored fast-changing ones. This 
shows that feature relevance depends on both the time 
window and task type. Wrapper-based feature 
selection proved essential for tailoring models to 
individuals. Future systems should consider 
additional inputs like behavior, speech, and 
demographics to improve accuracy and adaptability. 
The stress detection approach depends heavily on 
sensor quality, the type of stress, and task context. 
Since stress responses vary by stressor and timescale, 
models trained on one task may not generalize well to 
another. Using real-time processing and wrapper-
based feature selection helped reduce signal noise and 
adapt to individual differences. However, real-time 
systems face issues like model degradation over time, 
lack of retraining, and physiological adaptation. 
Personalized systems may need occasional 
recalibration using stress biomarkers like cortisol. 
Other challenges include age-related physiological 
changes, overfitting due to feature correlation, and the 
assumption of Gaussian data in the A Bayes classifier. 
Future systems should handle non-Gaussian features 
better and evaluate how classifiers and time window 
sizes affect feature selection.   
 
               V.CONCLUSION   
This research addresses the challenges posed by 
individual variations in stress responses and the time-
series nature of physiological signals. By 
implementing a personalized timeseries interval 
approach, we evaluated the objectivity, reliability, 
and validity of a real-time stress detection system.  
The distinction between simple and complex tasks 
successfully established varying stress levels, making 
them suitable for machine learning ground truth.  

Analysis of different window sizes provided insights 
into the most effective sensors and features for 
varying time intervals. The results demonstrated that 
a personalized model outperformed a generalized 
one. Additionally, the  study assessed the impact of 
indirect approximations by supervised machine 
learning classifiers, comparing them against the 

MODEL   ACCURACY   

Decision Tree   72   

Navie Bayes   91   

Random Forest   85   

SVM   85   
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benchmark optimal classifier, A Bayes. It was 
observed that indirect approximations could 
influence classifier performance, ranging from a 
decrease of 11% to an increase of 14% relative to A 
Bayes.  

These findings indicate that a personalized system 
offers promising performance compared to 
previous multi-class stress detection studies. 
Researchers must carefully select HMIs, sensors, 
and features, as they may not fully account for 
inter- and intra-individual differences in stress 
physiology. Future work will focus on enhancing 
personalized stress detection systems by 
incorporating methods that adapt to temporal 
variations in individual stress responses and 
physiological signals.  
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