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Abstract: Cloud manufacturing is an evolving networked 

framework that enables multiple manufacturers to 

collaborate in providing a range of services, including 

design, development, production, and post-sales support. 

The framework operates on an integrated platform 

encompassing a range of Industry 4.0 technologies, such as 

Industrial Internet of Things (IIoT) devices, cloud 

computing, Internet communication, big data analytics, 

artificial intelligence, and blockchains. The connectivity of 

industrial equipment and robots to Internet opens the cloud 

manufacturing to the massive attack surface of 

cybersecurity and cybercrime threats caused by external 

and internal attackers. The impacts can be severe because 

physical infrastructure of industries is at stake. One 

potential method to deter such attacks involves utilizing 

blockchain and artificial intelligence to track the provenance 

of IIoT devices. This research explores a practical approach 

to achieve this goal by gathering provenance data associated 

with operational constraints defined in smart contracts and 

identifying deviations from these constraints through 

predictive auditing using artificial intelligence. A software 

architecture comprising IIoT communications to machine 

learning for comparing the latest data with the predictive 

auditing outcomes and logging appropriate risks was 

designed, developed, and tested. The state changes in the  

smart ledger of smart contracts were linked with the risks 

such that the blockchain peers can timely detect high 

deviations and take actions. The research defined the 

constraints related to physical boundaries and weight lifting 

limits allocated to three forklifts and showcased the 

mechanisms of detecting risks of breaking these constraints 

with the help of artificial intelligence. It also demonstrated 

state change rejections by blockchains at medium and high-

risk levels. This research followed software development in 

Java 8 using JDK 8, CORDA blockchain framework, and 

Weka package for random forest machine learning. As a 

result of this, the model, along with its design and 

implementation, has the potential to enhance efficiency and 

productivity, foster greater trust and transparency in the 

manufacturing process, booster risk management, 

strengthen cybersecurity, and advance sustainability efforts. 

 

Keywords: provenance; blockchain; smart contract; 

predictive auditing; cloud manufacturing risks; industrial 

internet of things. 

 

I. INTRODUCTION 

Cloud manufacturing, as the name suggests, is a 

framework of operational planning, scheduling, monitoring, 

and control of manufacturing operations using hosted 

applications on the cloud computing [1–3]. Traditional 

manufacturing systems were controlled by programmable 

logic controllers (PLCs) operated by the local on-plant 

computers, which were capable of running manufacturing 

operations in limited physical spaces. The software systems 
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used for materials planning, operations scheduling, 

monitoring, and control were also hosted within the data 

centers of the manufacturing plants. These systems were not 

connected to Internet as they were networked 

using proprietary protocols and connections. Hence, the 

manufacturing operations were not exposed to cyber security 

threats in their traditional designs. For developing dynamic 

capabilities to respond to rapid demand and supply changes, 

manufacturers entered in strategic alliances to cover larger 

customer bases and meet the demands during normal times 

as well as during uncertainties and shocks [4–6]. In the 

collective operations, manufacturers needed to integrate their 

operations, which was possible by creating digital values 

using digitalization systems by Industry 4.0 technologies 

[7,8]. The digital value proposition could be achieved by 

making the PLCs operate with open communication 

protocols by transforming them into cyber-physical systems. 

The newly evolved Industrial Internet of Things (IIoTs) was 

used to transform the PLCs into cyber communication 

devices such that they could interface with the Internet and 

be controlled remotely. With this technological development 

and the already recognized problem of disconnected 

manufacturing silos and crunch of resources in computing, 

memory, and storage capacities of the data centers operated 

and maintained by manufacturing organizations, cloud 

manufacturing became a viable option for the future of 

manufacturing. 

Interfacing PLCs with the Internet for controlling them 

through cloud manufacturing applications hosted on the 

cloud computing opened the gate for cyber threats to 

manufacturing organizations [9]. Cyber security threats are 

already prominent in manufacturing industry. About 75% of 

oil and gas industry have suffered at least one successful 

attack causing measurable business impacts by 2017. Power 

grids have suffered about 15% of the total number of cyber 

attacks in 2017. More recent statistics reported by Varonis 

and Forbes websites [10,11] reflect the ongoing trends of 

cyber attacks on manufacturing systems. Their reports stated 

that malicious power shell scripts targeted at cyber physical 

devices (detected and blocked) increased by 1000% to about 

5200 monthly average attacks in 2021 and 2022 [10,11]. 

Normally, protection against remote code execution tactics is 

robust but rogue IIoT devices installed by insiders can cause 

a major loophole especially by using malicious and non-

transparent algorithms [13,14]. The more worrying trend is 

about insiders creating deliberate loopholes in the cyber 

physical systems of manufacturing plants thus opening an 

attack surface for external exploits to penetrate and use the 

compromised cyber physical systems as launch pads [12,15–

17]. The activity is reported to be about 30% of the overall 

number of attacks [10,11]. The extent to which unsolicited 

IIoT devices can be sneaked into manufacturing networks 

has not been estimated yet. However, 30% of the 5200 cyber 

attacks on IIoT devices in 2021 and 2022 were carried out 

through insider activity, which reports a significant trend that 

is expected to increase [10,11]. In order to address these 

challenges, cyber security threats need to be visualized with 

a different perspective as compared with those threats in 

self-hosted manufacturing and supply chain computerized 

control systems [17]. 

This research presents design, prototyping, and testing 

of controls employing Artificial Intelligence (AI) and 

Provenance Blockchain framework for protecting 

organizations using cloud manufacturing applications against 

the cyber security risks. As these organizations are having 

their PLCs transformed to cyber physical systems, they 

should be certified and accounted at the time of inception 

and during their operations. As reviewed in the literature 

review, provenance is the dynamic metadata of systems and 

devices that captures their “data about their manipulation 
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history” (including change of ownership and assignment to 

various roles). As further reviewed in literature review, 

blockchains can be used to form trusted networks of partners 

operating their assets in supply chains and logistics for 

serving common demands and orders. It is hereby 

emphasized that if the provenance system can be deployed 

on such blockchains to capture the “real-time operational 

data about the manipulation history” of cyber physical 

systems used in logistics and supply chain operations for 

cloud manufacturers, it can help in mitigating cyber security 

risks to them by conducting AI-enabled predictive auditing. 

The research questions of this study are the following: 

 

1. What are the risks associated with cloud manufacturing in 

Industry 4.0? 

2. How can provenance blockchain be used to provide 

greater transparency and traceability in the cloud 

manufacturing process using AI-enabled predictive 

auditing? 

3. How can this system help in mitigating cloud 

manufacturing risks in Industry 4.0? 

In this research, the first research question is answered 

through literature review, the second research question is 

answered through designing, developing, and testing a 

software prototype, and the third research question is 

answered through a critical analysis of the software prototype 

keeping in context the findings in the answer to the first 

research question. The next section presents a review of 

literature. 

 

II. LITERATURE REVIEW 

The modern era for the manufacturing sector is highly 

competitive, dynamic, and complex with uncertainties beyond 

the controls of individual companies [4,5]. To compete, 

survive, and flourish in this environment, manufacturing 

organizations need to develop “dynamic capabilities” to 

manage rapid changes as per the demand and competitive 

dynamics of their target markets [4–6]. Building dynamic 

capabilities require strategic alliances among multiple 

manufacturing organizations and use of modern technology 

to develop incremental improvements and rapid adjustments 

of manufacturing resources, processes, knowledge, and skills 

through management controls. The strategic alliances can be 

executed by creating a joint cloud manufacturing portal of 

applications that can monitor and control the manufacturing 

processes of the plants of the collaborating companies in the 

strategic alliance [1–3]. The Industry 4.0 technologies and 

processes are viewed as the foundation for developing 

dynamic capabilities for cloud manufacturing [3,4,7,8]. 

Industry 4.0 technologies and processes have influence on 

digitalization, digital value creation, real time knowledge of 

markets and demands, quick production and marketing, 

ability to use and reuse materials and resources optimally, 

and sustainable development [4]. 

As introduced in the introduction section, cloud 

manufacturing comprises PLCs transformed as cyber physical 

systems running the manufacturing controls of several plants 

collaborating through the cloud-hosted applications for 

serving the demand dynamics. As the cyber physical systems 

are interfaced with the Internet, they are prone to cyber 

threats. Some of the known cyber security risks to cloud 

manufacturing systems are the following [12,15–19]: 

 

(a) Eavesdropping attack: an attack mechanism in which, 

the communications from authorized devices to others 

like them are captured in between by eavesdropping 

devices (called listeners); 

(b) Masquerading attack by capturing packets of unsecured 

IIoTs: an attack mechanism in which an unauthorized 

cyber physical system captures packets from unsecured 
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IIoTs and masquerades as an authorized controller to the 

cloud hosted manufacturing applications; 

(c) Distributed Denial of Service (DDoS): an attack 

mechanism in which, massive scale storms of packets 

are bombarded to the cyber physical systems through 

unprotected Internet connections compromised by the 

attackers thus overloading the computing systems, 

networking links, and cyber physical controllers; 

(d) Side channel attacks: these are penetration attacks 

through the side channels into the manufacturing 

network, which are less monitored or ignored by the 

monitoring systems; 

(e) Cross-side scripting attacks: these are Trojan scripts 

that can be mixed with the running scripts through SQL 

injection; 

(f) Automated code-based attacks (such as Bots): these are 

penetration attacks caused by pre- programmed 

automatic codes; 

(g) Exploit-based attacks: these are attacks orchestrated 

through open-source programs created by hacking 

experts; 

(h) Identity thefts (of authorized IIoT devices): these are 

caused by eavesdropping attacks to capture 

authentication and authorization details of IIoT devices; 

(i) Insider trading and proliferation: insiders engaged in 

malicious activities such as injecting Trojan codes in 

running programs or opening firewall ports for external 

attackers to launch their exploits; 

(j) Fake sensor data feeding and actuation attacks in 

control systems: these are well planned targeted attacks. 

For example, the attacker may send false signals of 

lowering valve pressure in a key pipeline thus causing 

the control system to gradually increase the pressure in 

the pipeline leading to an explosion; 

The above list provides the answer to the first research 

question. The cloud manufacturing partners using blockchain 

technology for smart contracts to execute logistics and 

supply chain operations can integrate provenance data of 

IIoT devices with the blockchain [20–22]. Blockchains 

comprise of nodes integrated in the form of a chain such that 

contracts signed for logistics and supply chain operations can 

be stored in them in the form of encrypted blocks identified 

and integrated through hash functions. Provenance of 

computing devices and software systems is a separate 

database describing the characteristics, ownership, 

operational modes, and several such details about those 

computing devices [23]. Provenance on cloud computing can 

help in running forensic analysis of past events if recorded 

separately in addition to the data generated by the events 

[24]. This can ensure transparency, data fidelity and 

protection, privacy issues of the data collected, quality 

control, and intellectual property protection [25]. In cloud 

manufacturing, the IIoTs and the cyber physical systems 

enabled by them can be tracked closely using their 

provenance data [26–28]. The cyber physical systems can be 

compromise by hackers in several ways. Some known 

concerns are the following [15–19]: 

 

(a) Validating the identity of cyber physical system enabled 

with IIoT communications; 

(b) Tracking rapid deployments and Internet-enabling of 

millions of cyber physical systems; 

(c) Traceability of cyber physical systems added, 

modified, and removed; especially installed on mobile 

assets; 

(d) Validating fidelity of sensor data sent for influencing 

process events interpreted out of the sensory data and 

the decision-making algorithms running the actuation 

commands; 

(e) Establishing accountability and liability of individuals 
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owning the cyber physical systems; 

(f) Inter-cloud assurances of cyber security; 

(g) Algorithmic transparency (accountability of 

performance and behaviours of algorithms deployed 

for controlling operations of cyber physical systems); 

(h) Cyber physical systems indulging into erroneous or 

malicious processing thus affecting the execution of 

smart contracts negatively; 

 

The above six concerns form the problem for which, 

the prototype solution is designed and tested in this research. 

When manufacturers integrate their cyber physical systems 

driving their manufacturing processes for cloud 

manufacturing, they can also integrate their Enterprise 

Resource Planning (ERP) systems through blockchains [29]. 

Modern ERPs have interfacing to popular blockchain 

frameworks such as Hyperledger and Ethereum. In this 

manner, the IIoTs and their enabled cyber physical systems 

are also hooked to the blockchain [30,31]. The data collected 

from them can be stored on big data systems to monitor their 

events through continuous auditing. By using artificial 

intelligence, the predictions can be carried out such that the 

actual events versus predicted events can be compared [32]. 

To understand how this can work, a design scenario of a 

blockchain- controlled manufacturing network for creating, 

executing, and monitoring smart contracts using Hyperledger 

Fabric (based on explanation in Reference 33) is presented in 

Figure 1. This design can help in visualizing where the 

provenance data streams and artificial intelligence can be 

positioned in this blockchain. 

 

 

Figure 1. A design scenario of a blockchain-

controlled manufacturing network for creating, 

executing, and monitoring smart contracts using 

Hyperledger Fabric (drawn based on the detailed 

explanation provided in Reference 33). 

 

In the scenario shown in Figure 1, four cloud 

manufacturing organizations R0, R1, R2, and R3 decide to 

setup a manufacturing blockchain network BN for signing, 

sharing, and monitoring smart logistics and supply chain 

contracts. R0 is the contracting authority and others are 

contracting vendors. They agree to setup to two network 

channels C1 and C2 governed by policies-based network 

configurations CC1 and CC2, respectively. C1 is shared by 

R0, R1, R2, and R3, and C2 is shared by R0, R2, and R3. 

Thus, R1 has no business relation with C2 and thus is denied 

access to it. The A1, A2, and A3 are cloud applications 

deployed by R1, R2, and R3 to interact with the network 

through the authorized channels. To interact with the 

network, R1, R2, and R3 need to authorize peers P1, P2, and 
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P3 representing them. R0 authorizes O for managing orders 

to R1, R2, and R3 through the peers P1, P2, and P3. The 

peers P1, P2, and P3 are authorized to access the block chain 

network BN using cryptographic keys issued by certification 

authorities CA1, CA2, and CA3, respectively. The ordering 

authority manages C1 and C2 network channels to interact 

with P1, P2, and P3. P1 has access to C1 only whereas P2 

and P3 have access to both C1 and C2. When orders are 

placed, the smart contracts are signed digitally using 

signatures issued by CA1, CA2, and CA3 to P1, P2, and P3 

for the contracting vendors, and the digital signature issued 

by CA0 to O for the contracting authority. Further to 

digitally signing the contracts, CA1, CA2, and CA3 issue 

X.509 certificates to the components identified as belonging 

to the organizations R1, R2, and R3, respectively. The 

certification authorities are also used to sign on transactions 

to affirm their approvals. On signing, the smart contracts are 

stored in the smart ledgers L1 and L2 belonging to the 

network segments C1 and C2, respectively. P1 stores a copy 

of L1 only (as it, and its company R1 do not have any 

business connection with C2), whereas P2 and P3 store a 

copy each of L1 and L2. The events related to the smart 

contracts L1 and L2 (such as approved logs of works 

completed as per the contractual terms) are stored in state 

databases S1 and S2. P1 maintains a copy of S1, and P2 and 

P3 maintain a copy of S2 and S3 (as per their access rights). 

All copies of state databases are synchronized. The ordering 

authority O need not maintain a copy of the state databases 

because organization R0 is not contributing to state changes. 

However, O can inspect S1 and S2 at will. 

The above design scenario represents a vanilla 

blockchain network for creating, executing, and monitoring 

smart contracts and the events linked with their closure. This 

research added provenance capturing in real time and 

predictive analytics using artificial intelligence in which, 

random forest 

algorithm was used. The blockchain framework selected for 

this research was CORDA [34,35], which is lightweight and 

can be installed, programmed, and executed in a personal 

laptop having i5 or i7 processor and 16GB of RAM. The 

blockchain contract rules were configured in the form of 

predictive auditing such that the updates are accepted only 

when the risks predicted by AI are within the prescribed 

limit. The methodology for conducting the primary research 

is presented in the next section. 

 

III. METHODOLOGY 

This research is an original conceptualisation of 

solution to the concerns related to employment of cyber 

physical systems in cloud manufacturing networks, identified 

by the references [15] to [19]. This research was designed to 

learn by experiencing a conceptualised design of provenance 

in CORDA blockchain framework available with open 

source codes. The knowledge was developed through 

experiencing the coding process and running tests by 

simulating scenarios of provenance data anomalies using 

simulated production data collection in logistics processes. 

The random forest machine learning algorithm was coded in 

such a way that it could predict numerical values of 

operating parameters and detect risk levels based on 

boundary parameters. The risk levels were appended to the 

event records confirming work-in-progress and completions 

as per the terms of the smart contracts. Thus, the operations 

manager monitoring the event records can view the risk 

levels and investigate the specific IIoT devices in question. As 

the events data may be collected from a group of IIoT 

devices, the entire group may require investigation till a 

rogue IIoT device is located by the investigators. As this is 

an original conceptualisation to solve the research problem, 

it required learning through several rounds of trials and 
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experiences till the final results obtained are satisfactory. 

Keeping this approach in mind, the philosophy selected is 

pragmatic and the data collection and analysis shall be both 

qualitative and quantitative [36–38]. The learning was both 

inductive and deductive. The knowledge gained from 

literature sources and technical documentation of Hyperledger 

and CORDA frameworks were qualitative. The knowledge 

gained from the machine learning actions when inbound data 

is manipulated was quantitative. The accuracy analysis of 

machine learning was quantitative, as well. Inductive 

research was required to learn the design and operations of 

blockchains from the technical documentation of 

Hyperledger and CORDA frameworks, and programming 

techniques from the CORDA manuals. Deductive research 

was required to test the design idea of the researcher by 

appending the provenance control based on anomaly 

detection by machine learning. 

The state databases S1 and S2 are the main ERP-linked 

systems getting regular updates on events completed as per 

the smart contracts stored in smart ledgers L1 and L2. State 

changes in the S1 and S2 are facilitated by the ERP 

applications A1, A2, and A3 on behalf of organisations R1, 

R2, and R3 serving R0 through their respective smart 

contracts. Hence, the responsibility and accountability of 

accuracy and integrity of events data being fed to S1 and S2 

state databases inside the manufacturing blockchains are with 

administrators of A1, A2, and A3, which are positioned as 

ERP data systems outside the blockchain. In this research, 

A1, A2, and A3 are the focal points for building strong 

provenance security controls. The provenance in this 

research is not merely static metadata or occasional changes 

to it, albeit comprises operational and allocation data and 

rules. In this research, three forklifts are assigned to different 

physical zones and are assigned to carry different ranges of 

weights. The location and weight data streams are considered 

as dynamic provenance feeds. 

The proposed modification makes the network as 

blockchain network with provenance (BNP). The 

applications A1, A2, and A3 have Message Queuing 

Telemetry Transport (MQTT) interfaces on which, they 

receive provenance data from IIoT devices attached to the 

three forklifts. The data from the IIoT devices were used to 

change the states of state databases inside the blockchain by 

the blockchain peers P1, P2, and P3. The machine learning 

(ML) was implemented to make predictions of risk levels by 

comparing the latest data arrived with their predicted values. 

The provenance data was stored by the ML in a database 

called ProvDB. The algorithm planned for machine learning 

was random forest. The machine learning shall be trained 

using historical data in the ProvDB database. To begin a 

credible learning cycle about 500 records are planned to 

begin with, in the ProvDB 

database. The initial records were considered as IIoT inputs 

from the three forklifts identified as Asset01, Asset02, and 

Asset03. The random forest was tasked to make asset-wise 

independent predictions. Hence, it was coded to first export 

the asset-wise data in separate files and then makes separate 

and independent predictions about their next state values. 

The risk levels were calculated by comparing the next state 

predicted values with the current state values received. The 

risks were defined as per the physical boundaries within 

which, the assets were allowed to operate and the loading 

limit on each asset. The physical boundaries of movements 

of Asset01 (A01) were: X = 1 to 200, Y = 1 to 200, and Z = 

1 to 200 feet, and weight = 100 KG. The physical boundaries 

of movements of Asset02 (A02) were: X = 201 to 400 feet, 

Y = 201 to 400 feet, and Z = 201 to 400 feet, and weight = 

125 KG. The physical boundaries of movements of Asset03 

(A03) were: X = 401 to 600 feet, Y = 401 to 600 feet, and Z = 

401 to 600 feet, and weight = 150 KG. In real world, it can be a 
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multistorey warehouse in which, reach truck forklift 

machines have been assigned to fixed boundaries. If they 

breach these boundaries, they will enter in the zones of other 

forklifts and cause accidents. There can also be issues of 

wrong forklifts assigned for jobs not suitable for them (such 

as under capacities of weight lifting). The extent of breach 

defines the level of risk. For example, if a forklift has 

breached only the boundary of another forklift, the risk level 

will be logged as LOW but if a forklift breaches up to the 

centre of the zone of another forklift, the risk level will be 

logged as HIGH. Four risk levels were assigned: NONE, 

LOW, MEDIUM, and HIGH. 

The state data was entered along with the predictive 

risks estimation made by the machine learning (ML) by the 

blockchain peers. Once authorised because of risk levels 

within acceptable limit, the IIoT devices were trusted to 

provide genuine events updates from the running processes, 

which can be used for changing the states in the state 

databases of the blockchain. However, if the risks are not in 

the acceptable range, the blockchain state changes would not 

occur and the peers will be suggested to conduct 

investigations. The CORDA rules in the blockchain were 

programmed as the following: 

For all assets: 

X should be less than or equal to 600; Y should be less 

than or equal to 600; Z should be less than or equal to 

600; 

Weight should be less than or equal to 150; Risk level 

should be either NONE or LOW; 

To simulate IIoT data transfers, a Message Queuing 

Telemetry Transport (MQTT) server called Apache 

ActiveMQ was used. The data in the ProvDB was sent from 

the Apache ActiveMQ in the form of topic publisher data 

sent by a publisher file coded as Publisher.Java, which will 

have records matching the database structure of the ProvDB 

database. The first column comprised of device keys used for 

registration and the remaining columns constituted the 

numerical data collected from the sensors in the running 

processes. The topic publisher data sent to a subscribed 

listener code called Listener.java represented the numerical 

data collected from the sensors. For the purpose of this 

research, the topic publisher data was constructed manually 

and sent through the Apache ActiveMQ MQTT Broker 

server. In real industrial applications, the Publisher.Java shall 

be embedded as a firmware deployed in physical IIoT 

devices such that the topic publisher data will be constructed 

automatically by the industrial sensors integrated in the IIoT 

devices. For this research, the values are changed manually in 

the code itself to test different risk levels. The smart contract 

monitoring can be done with two quality objectives: right 

forklifts should be assigned to right zones and right weight 

loading capacities, and the forklifts should not breach their 

operating boundaries and enter zones of other forklifts (unless 

reallocated operationally). 

In this research, deploying real IIoT devices in a 

laboratory environment was avoided because the study is 

about detecting anomalies in the data collected from them and 

not about the engineering of the IIoT devices. The 

provenance data needs to be streamed to the big data systems 

through highly secured and encrypted channels with 

appropriate key exchanges, as stated in the studied by 

References [38] to [42]. It should be noted that streaming data 

from IIoTs may not be possible through encrypted links from 

the devices. IIoT devices are low capacity low-end 

systems. Implementing 

cryptography at the level of cyber physical systems may not 

be feasible. Hence, chances of breaches are possible. 

Provenance data validation is needed in Industry 4.0. This is 

the value addition proposed and tested in this research. 

The topic publisher data constructed manually 



International Journal of Multidisciplinary Engineering in Current ResearchISSN: 2456-
4265, Volume 6, Issue 7, July 2021, http://ijmec.com/ 

 
 

 

 

19 
 

comprised of a set of data values tagged to a process at 

periodic intervals. At every transmission, the values were 

varied slightly as is expected in a stable industrial process 

(like, up to 10 percent). Intermittently, larger variations were 

also injected in the data. The machine learning was 

programmed to learn from the ongoing data streams and 

predict the next combination of data. A decision rule using 

Random Forest algorithm was programmed to compare the 

predicted versus actual arrival of the next combination of the 

data. The risks were logged in the form of alerts about four 

variables: X-axis movement, Y-axis movement, Z- axis 

movement, and weight lifted. There were boundaries 

assigned to the four variables. At no breach, the risks were 

marked as NONE, at one breach the risks were logged as 

LOW, at two breaches risks were logged as MEDIUM, and at 

three and above breaches, risks were logged as HIGH. The 

risks were logged in a log file but not be passed on to the 

blockchain immediately at their occurrences. Their 

information was passed on to the state databases of the 

blockchain only when ten consecutive risk detection events 

of at least medium level have been logged by the rules 

engine. The log in the blockchain was not intended to be 

taking any automated action but to inform the peers P1, P2, 

and P3 to begin investigation about specific devices identified 

as changing their behaviours. The machine learning predictive 

algorithm was coded using Weka package of JDK 8 and the 

rules engine were coded using core Java 8 coding. 

The primary research environment and the tests 

conducted are reported in the next section. The primary 

research followed the design of Figure 2 and the scenario 

explained in this section. 

 

 

Figure 2. Addition of Provenance and Machine 

Learning to the architecture shown in Figure 1 

(Author’s own efforts). 

 

2. Primary Research 

The primary research was conducted by building the 

software architecture within a laptop environment running 

Ubuntu 22.04 operating system (a popular distribution of 

Linux). The software architecture and runtime flow used for 

the research project is shown in Figure 3. 

 

Figure 3. Software architecture used for the primary research 

(Author’s own efforts). 

 

Six main components were created and interfaced in the 

software architecture: 

 

(a) MQTT Broker Server using Apache ActiveMQ: The 

package ActiveMQ-5.15.0 was used to setup a MQTT 

broker server in Ubuntu 22.04. This package was 

selected because of its compatibility with Java 8 

version. 

(b) Publisher Java code: programmed using Java 8; Java 8 

was selected because CORDA for open source 
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development is available with packages compatible 

with up to Java 8 version only. Professional versions of 

CORDA are available on higher versions of Java. As 

stated in previous section, this code should be embedded 

in the firmware of the IIoT devices. However, for the 

purpose of testing this research executed the code 

several times through Ubuntu 22.04 terminal by 

manipulating the input data at every event. 

(c) Listener Java code: programmed using Java 8: this file 

is responsible to receive the data transmitted through 

the MQTT connections and save them into a ProvDB 

file to be read by the machine learning algorithm. 

(d) Provenance database in the ARFF format: The file was 

created by the Listener java code in ProvDB.csv; 

(e) Machine Learning code in Java with and in-built rules 

engine called WEKA: The package selected was weka-

3.7.0 because it is compatible with Java 8; the rules or 

risk assessment and logging were defined as detailed in 

the previous section; the machine learning code picks up 

the latest data from the ProvDB and then compares it 

with the latest next state predictions using 80% records 

for training and 20% for testing. Based on the 

predictions the machine learning populates the 

respective state files of Assets A01, A02, and A03 along 

with the latest risk values. The verbose report to be 

analysed by the blockchain peers is entered in 

conclusion.txt file in append mode (new records added 

to the older records). 

(f) CORDA blockchain framework with state rules defined 

in Java 8: To create smart contract state rules in 

CORDA, six Java files were configured: IOUState.java, 

IOUContract.java, IOUSchemaV1.java, 

ContractTests.java, ExampleFlow.java, and 

FlowTests.java. IOU is the name of smart contract 

tested in this experiment. While configuring these files, 

a database file named “iou.changelog-v1.xml” is 

configured automatically. This is the change log 

database comprising state changes of the smart contract 

named IOU. All the variables created in Schema and 

other files such as States and Flow, should have an 

existing record in the change log database. 

The tests were run several times following the steps as 

stated below. These steps are the main steps comprising of 

several technical sub-steps for each of them. 

 

 Step 1: Run the ActiveMQ console; 

 Step 2: Run the Listener.java file; this opens the MQTT 

connections in the ActiveMQ console; 

 Step 3: Run the Publisher.java and transmit data for 

location coordinates and weight carried out by a 

Forklift; 

 Step 4: Run the machinelearning.java file; 

 

The outputs will be generated in ProvDB (Provenance 

database with the latest record of assetplain.txt appended, 

asset01.arff, asset02.arff, asset03.arff, output.txt, 

prediction.txt, and finally, Conclusion.txt; 

 

 Step 5: Open the CORDA console through IntelliJ Idea; 

 Step 6: Try entering the latest values received in 

assetplain.txt, and analysing the risk log in 

conclusion.txt and entering the appropriate risk value 

(updates sent to the smart ledger of the smart contract); 

 Step 7: Observe the responses from the CORDA smart 

ledger and write the full report by analysing it and all 

the files generated by the machine learning code; 

 

The above steps were run for several combinations of 

input data values about the position and weight carried by 

three Forklifts identified as Asset01, Asset02, and Asset03 in 
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the blockchain database. The results are discussed in the next 

section. 

 

IV. DISCUSSION 

Authors should discuss the results and how they can be 

interpreted from the perspective of previous studies and of 

the working hypotheses. The findings and their implications 

should be discussed in the broadest context possible. Future 

research directions may also be highlighted. 

The results of all the tests conducted revealed two main 

states: 

 

(a) the machine learning algorithm decides that risk is 

either at NONE or at LOW level such that the state 

change in the CORDA smart contract is allowed; 

(b) the machine learning algorithm decides that risk is 

either at MEDIUM or at HIGH level such that the state 

change in the CORDA smart contract is prohibited 

instructing the blockchain peers to conduct 

investigations; 

 

100 tests were conducted by varying the values 

following a structured approach. The programming of data 

was about a scenario in which three reach truck forklifts (a 

type of forklifts suitable for high rise warehousing for vertical 

storage) are allocated to three different operating zones in a 

warehouse. All the three zones have dimensions of 200 X 

200 X 200 feet. They are touching each other but are not 

interconnected. They were called Zone1, Zone2, and Zone3 

in the testing. Zone1 is on the ground, Zone2 is located on a 

landfill about 200 feet high and Zone3 is located on an 

adjacent landfill about 400 feet high. A simple schematic 

created in Blender 3D software is presented in Figure 4: 

Figure 4. Physical layout of the warehouse and the three zones 

programmed for running the testing steps (author’s own design). 

 

As discussed in the Section 3, the three reach truck 

forklifts, named as Asset01, Asset02, and Asset03 were 

allocated to Zone1, Zone2, and Zone3, respectively. The 

physical boundaries of movements of the three assets were: 

 

 Asset01 (A01): X = 1 to 200, Y = 1 to 200, and Z = 1 to 

200 feet, and weight = 100 KG; 

 Asset02 (A02): X = 201 to 400 feet, Y = 201 to 400 

feet, and Z = 201 to 400 feet, and weight = 125 KG; 

 Asset03 (A02): X = 401 to 600 feet, Y = 401 to 600 

feet, and Z = 401 to 600 feet, and weight = 150 KG; 

 

It may be observed that the forklifts can be shifted 

between zones only when they are taken out because Zone2 

and Zone3 are accessible through ramps. Hence, breach of 

boundaries is possible only through planned allocations. The 

forklifts cannot breach their boundaries on their own. This is 

the reason this scenario was designed (that is, having no 

inadvertent breaches unless human actors are involved). The 

risk levels were defined based on how serious was the breach 

of these constraints. If a forklift is found to be breaching X or 

Y, the risk may be LOW because it might have been taken 

out from the warehouse in a parking place just to give it 

some rest to cool it down or for some maintenance and 

repairs. However, if there is a breach in Z-axis constraints 

(which will be along with breaches in X and Y axes because 

the forklifts have to be taken out and shifted through ramps), 

the risk level logged will be MEDIUM to HIGH depending 
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upon how far they have being taken away. The breach in 

weight levels along with location breach shall generate 

HIGH risk logging only. 

The 100 tests conducted were by entering location data 

with incremental changes, and later even the permissible 

weights were also breached. Initially, the forklifts were kept 

within their zones with no breach in weight as well. The risk 

logs were found as NONE. Thereafter, the forklifts were 

breached only at X and Y axes by imagining their locations 

outside their zones but not entering other zones. For example, 

the forklifts were positioned at various locations on the 

ground outside Zone1 and also on the landfill or the ramps 

outside Zone2 and Zone3. The risks were found to be logged 

as LOW. Thereafter, forklifts were entered into other zones 

and the risk levels were logged as MEDIUM to HIGH 

depending upon how far they were taken. Finally, when the 

weights were also breached, the risk levels of HIGH only 

were logged. 

In this research, the machine learning code was written 

in such a way that at every data set received, it conducts 

prediction of next state values and then compares them with 

the data received to log the risks. However, in reality there 

would never be an abrupt jump to risk levels MEDIUM or 

HIGH. The transition will be gradual as the assets are 

moving along their respective paths. This is the reason the 

tests also were conducted by following paths defined in a test 

scenario. When entering data into blockchain, the blockchain 

peers should not jump to conclusions. They should follow 

the trends carefully to see if there are real risks. The use of 

predictive analytics by AI helps in reducing unnecessary 

false positives. For example, if the reallocations have 

happened quite a few times in the past, they will reflect in the 

predicted values. Thus, the differences between the predicted 

and actual values will vary significantly only when sudden 

outliers are caused in the data streams. If a forklift has never 

been taken to another zone but has been taken out for cooling 

down or repairs several times in the past, the predictive 

values will detect breach only when the Z-value crosses its 

normal operating range. 

The system was found to abide by the rules and produce 

either of the above two states (a) and 

(b) without failing on even one of the tests. There were no 

false positive and false negative risks identified during the 

tests. However, the actual decision on true positives should 

be with the blockchain peers as they will compare the risk 

values with other data available, such as reallocations 

recorded in the ERP. Normally, the blockchain peer may 

come across false positives most of the time and hence enter 

NONE and LOW risks in the smart contract state updating. 

When they come across real MEDIUM and HIGH risks, they 

anyways cannot enter them in the smart contract as it will 

refuse to change the states. In such instances, the blockchain 

peers will be left with no option but to investigate the risks. 

At this stage, the third research question is answered by 

explaining how this system can solve the concerns raised by 

References [15] to [19] stated in the Literature Review. This 

research addresses the concerns to some extent justified as 

the following: 

 

(a) Validating the identity of cyber physical systems 

enabled with IIoT communications: This concern is 

clearly addressed in this research as the identity of the 

cyber physical system is registered in the MQTT broker 

server, in the ProvDB of the machine learning, in the 

training and testing database of machine learning, and in 

the smart contract of the blockchain. 

(b) Tracking rapid deployments and Internet-enabling of 

millions of cyber physical systems: With the system of 

smart contracts and smart ledgers in place, even 

millions of cyber physical systems shall be registered 
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and prepared for tracking and tracing before assignment 

to smart contracts. However, the IT capacities of the 

cloud manufacturing and the network bandwidth should 

be sufficient to handle volumes of data generated by 

millions of cyber physical systems in real time. 

(c) Traceability of cyber physical systems added, modified, 

and removed; especially installed on mobile assets: The 

machine learning shall continuously track the 

operational state changes of the cyber physical systems 

and log risks accordingly for the blockchain peers 

monitoring the system. Major changes like addition, 

modification, and removal cannot go unnoticed by the 

machine learning. There may be false alarms because of 

communication interruptions (like data received in a 

topic stops temporarily) but the traceability and 

tracking will always be ON. 

(d) Validating fidelity of sensor data sent for influencing 

process events interpreted out of the sensory data and 

the decision-making algorithms running the actuation 

commands: This is a tough challenge. The validity of 

fidelity of sensor data can only be made by decision-

making algorithms comprising of engineering 

knowledge integrated. This system can, however, report 

inconsistencies in the state changes through its 

predictive capability and log risks. This may be of some 

help to the engineers operating the cyber physical 

systems. 

(e) Establishing accountability and liability of individuals 

owning the cyber physical systems: This concern will be 

addressed by the system designed. At the time of 

registration of the assets, the ownership and 

accountability details will be recorded in the 

blockchain. The smart contracting parties will be fully 

liable for the assets registered and allocated to the 

contract. Further, blockchain peers from all contracting 

parties will monitor the operations thus ensuring timely 

detection of risks logged by the machine learning. 

(a) Inter-cloud assurances of cyber security: Inter-cloud 

assurance is possible in this solution if the same MQTT 

broker and machine learning systems are implemented 

for all the contracting parties interfacing through multi-

cloud blockchain. If multiple brokers and machine 

learning systems need to be implemented in a multi-site 

environment then replication of data between the 

Conclusion.txt files implemented in multiple clouds 

should be implemented. 

(b) Algorithmic transparency (accountability of 

performance and behaviours of algorithms deployed for 

controlling operations of cyber physical systems): This 

is another tough challenge to be addressed. 

Performance and behaviours of algorithms require 

much deeper monitoring and control by sophisticated 

systems having full knowledge about the operating 

behaviours and performance metrics of the algorithms. 

This system can help by detecting changes in the 

already progressing patterns and reporting them as risks 

at different levels depending upon the rules defined in 

the machine learning code and the blockchain state 

rules. 

(c) Cyber physical systems indulging into erroneous or 

malicious processing using exploits, scripting attacks, 

bots, device identity theft, and other means thus 

affecting the execution of smart contracts negatively: 

Detection of exploits, scripting attacks, bots, etc. need 

to be enabled through intrusion detection and prevention 

systems. This solution can detect operational anomaly 

caused by such malicious software attacks through 

machine learning but cannot detect presence of the 

software. Any anomaly causing negative execution of 

smart contract will be detected through machine learning 
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and traced to the device using provenance data. 

Negative execution will breach the blockchain state 

transition rules and hence transactions will be rejected 

promoting for investigations. Attempts of device 

identity theft will also be difficult for the attackers 

because three levels of registration in MQTT broker, 

machine learning ProvDB database, and the blockchain 

smart contract will cause deterrence for the attack 

planners. There is high chance that the attackers will not 

be able to plan a perfect breach of this entire system, 

although they should never be underestimated. 

 

The challenges of provenance verification system to 

identify the IIoT devices accurately and build traceability of 

doubtful devices in the network, and the challenges of 

provenance detection of bindings, fault tolerance, integrity 

and confidentiality verifications through data, chain, and 

origin integrity verifications, access controls, and protection 

of keys during sharing may be solved to some extent 

following the solution of continuous operational risks 

monitoring in this research. Once devices are registered in 

the blockchain, they will be treated as trustworthy in the 

system tested in this research. However, this will not be a 

permanent perception built about the devices even if they 

follow all the routines and key exchanges for valid 

registration. Devices may be subject to investigation if their 

operational boundaries are breached and risks from medium 

onwards are logged because the blockchain state change will 

not be allowed. The next state prediction will always be based 

on the historical gradual state changes and hence any drastic 

variations will be detected promptly. Further, the 

predictability can also cover chances of devices breaching 

their operational boundaries in due course of their 

operations. As the blockchain peers are monitoring the 

records periodically and updating state changes in the 

blockchain, they will have opportunities to detect such 

probabilities well in advance and correct the course of 

operations of the devices to mitigate such risks proactively. 

There may be chances of some false positives as the devices 

may have been reallocated deliberately through mutual 

agreements among the blockchain contracting parties. 

However, reallocations should always be done through new 

smart contracts such that the MQTT broker server and the 

machine learning rules could be updated. 

IIoT sensing streams used as provenance data validated 

by artificial intelligence for making state changes in smart 

contracts stored in blockchains can have several business 

benefits. The smart contract state rules can be defined to 

enforce any policies on the whole cloud manufacturing 

network. In future, this model and its design and coding may 

be useful not only for cyber security risk mitigation but also 

for increase in efficiency and productivity, increase in trust 

and transparency in the manufacturing process, and 

promoting sustainability. For example, if the contract 

demands emission levels from logistics and transportation 

equipment to be below defined thresholds, the IIoT data 

sensed and the machine learning driven risk levels thus 

logged can be useful in accepting or rejecting state changes 

in the smart contracts putting compliance pressure. 

 

V. CONCLUSIONS 

This research was conceptualized with three research 

questions replicated as the following: 

 

1. What are the risks associated with cloud manufacturing in 

Industry 4.0? 

2. How can provenance blockchain be used to provide 

greater transparency and traceability in the cloud 

manufacturing process using AI-enabled predictive 

auditing? 
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3. How can this system help in mitigating cloud 

manufacturing risks in Industry 4.0? 

In response to the first research question, the cyber 

security threats to cloud manufacturing were listed based on 

review of literature. Sophisticated threats like code 

injections, side channel attacks, covert channels, exploits, 

malware, and DDoS may be mitigated on cloud computing 

because of high end security controls. However, cloud 

manufacturing is dependent upon the data streams from IIoT 

devices attached with the process event sensors in the plant 

machinery, robots, and logistics equipment. They may not be 

protected from the sophisticated threats because of low 

computing and storage power requiring use of low end thin 

operating systems (such as Lubuntu, which is a light weight 

version of Ubuntu). If IIoT devices are compromised 

especially by insiders, they can be used as launch pads for 

attacking the manufacturing infrastructure. The concerns 

related to IIoT devices were identified separately, which 

were related to cyber security and beyond related to 

operational reliability, trust, and quality assurance. Their 

behavioral trends need to be monitored to find out if they are 

compromised making them rogue devices. A promising 

solution evolving in scientific research is using provenance 

blockchain employing predictive capabilities of AI. This 

concept was adopted in this research as the second research 

question. The second research question was answered by 

studying the provenance, blockchain, and AI solutions for 

cloud manufacturing as separate themes, which were 

combined in a design realized within a Ubuntu laptop 

environment. A scenario was imagined in which, three reach 

truck forklifts allocated to three separate zones in a 

warehouse having constraints in the form of physical 

operating boundaries and weights. AI was programmed to 

detect breaches to the constraints and logging the risks using 

random forest predictive analysis and an in-built rules engine 

within the coding. Thereafter, a smart contract system was 

programmed in CORDA framework including the risks in the 

state change rules for tracking the events conducted to fulfill 

the smart contract’s requirements. The transparency and 

traceability were ensured by making the event logs, 

predictive AI results, and the risk logs transparent to all 

blockchain peers and the customer. 

With this system in place, the third research question 

was framed to explore how it can help in mitigating the cloud 

manufacturing risks. To answer this question, a number of 

tests were conducted to deeply experience the behavior of this 

system. The layout of the warehouse imagined for this 

research was drawn in Blender 3D software and presented 

for visualizing the risky scenarios. Thereafter, the possible 

risky scenarios were discussed. As this system operates in 

real time, risk logs happen at each data transmission event 

and data comparison between AI predictions and actual. 

Using AI predictions shall reduce the chances of false 

positives as the risk levels will increase gradually by 

following the paths of the vehicles on their way to breaching 

the boundaries. However, the blockchain peers need to 

correlate the risk values with all other data available in the 

ERP systems. If they detect deliberate human actions logged 

in the system officially, then they can safely assume the risks 

to be in control and update the events in the blockchain smart 

contracts. However, if the human actions are found to be not 

declared in ERP officially, then they can delay updating the 

state changes and first investigate the reasons. It was 

visualized that such real time monitoring of risks can help in 

risk mitigation to any IIoT related risks, such as quality risks, 

reliability risks, sustainability risks, efficiency risks, 

productivity risks, and any other area of concern of the 

engineers. The right kind of IIoTs and sensors need to be 

selected, and the Java rules defined for risk assessment needs 

to be customized as per the variables being monitoring. The 
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random forest algorithm will simply predict new numbers 

based on its training and testing data, and the rules engine 

shall detect and publish the associated risk levels and their 

related actions. 
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