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Abstract: The effectiveness of Deep Learning (DL) models is fundamentally determined by the set of their 
hyperparameters, which include the settings, which control the learning process and the structure, i.e. the learning 
rate, network depth, dropout rate, and the choice of the optimizer. Hyperparameter optimization (HPO) may use 
manual and grid search techniques, which are often computationally infeasible and incapable of solving complex 
and high-dimensional search spaces. In this paper, Evolutionary Strategies (ES) is reviewed and analyzed as a 
powerful, population-based meta-heuristic method of automated HPO in DL. Based on biological evolution, ES 
uses selection, crossover and mutation mechanisms to repeatedly modify a population of candidate 
hyperparameter combinations to areas of the performance landscape that are optimal. The underlying 
methodology that we synthesize includes the knowledge of other adjacent areas such as Bayesian optimization in 
tuning of SVM, multimodal learning problems, or any other area where efficient model tuning is needed. The 
article has presented the most important types of ES variants in a systematized discussion (e.g., Genetic 
Algorithms, Covariance Matrix Adaptation Evolution Strategy), how they can be combined with DL training 
pipelines and have missed the comparison of the performance of these two categories of HPO with other types of 
HPO such as Random Search, Bayesian Optimization, and Gradient-Based Optimization. Empirical studies in a 
wide variety of fields (including image registration (where CNNs are used) and time-series prediction (where 
LSTMs are used) and radiomics-based medical disease diagnostics show that ES is always able to determine high-
performing models, and in many cases, it has a better exploration behavior in rugged, non-convex search spaces. 
Nonetheless, they have issues, such as, the cost per evaluation is too high, they have to be parallelized, and 
developed efficient fitness functions and genetic representation of neural architectures. The paper ends by giving 
a list of future research directions on the border of evolutionary computation and DL, including neuroevolution 
to optimize joint architecture and parameter search and multi-objective optimization to find balance between 
accuracy and efficiency, and the generalization of such concepts to apply to emergent models in finance, IoT 
systems, and multimodal AI. 
 
Keywords: Evolutionary Strategies, Hyperparameter Optimization, Deep Learning, Genetic Algorithms, Meta-
Heuristics, Neural Architecture Search, Automated Machine Learning (AutoML), Model Tuning. 
 
1. Introduction 
Tuning deep learning models has become a critical 
researcher limit within Automated Machine 
Learning (AutoML), and has graduated out of an 
empirical practice to be the black art of the field. The 
model also has hyper parameters that are 
independent of its trainable weights and which 
determine its capacity, regularization and learning 
behaviors. The proper choice of values is essential 
in the process of attaining the highest performance, 
generalization, and training performance. Old 
techniques such as manual tuning cannot be scaled 
amongst others whereas exhaustive grid search 
cannot be solved using computer when the 
dimension exceeds a high value. Random search is 

more effective, but not directed to exploration 
(Ghori, 2021; Nataraj et al., 2022). 
Another algorithm that can be used as an alternative 
with an equally powerful offering is Evolutionary 
Strategies (ES), a category of population-based 
optimization algorithms that are motivated by the 
Darwinian process of evolution. ES is able to 
explore the complex, discontinuous and noisy search 
space by keeping a population of candidate solutions 
(hyperparameter settings), genetic operators acting 
on them, and the fittest surviving into the next 
generation (Puchakayala, 2022; Shalini & Patil, 
2021). The paper examines the theory, use, and the 
effect of ES as applied in optimization of the DL 
parameters. We place it in the context of the wider 
field of optimizing the ML as a system, with 
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parallels to similar optimization of nearby systems 
such as optimization of Bayesian Optimized SVM 
(BO-SVM) to tune classifiers (Sardesai and Gedam, 
2025), the challenge of optimizing complex systems 
such as Cognitive Radio Networks (Shalini et al., 
2025), and the ubiquitous issue of optimization of 
model architecture in a wide range of areas like 
financial prediction and medical image analysis 
(Ghori, 2019). 
 
2. Theoretical Foundations of Evolutionary 
Strategies 
ES act on a population 𝑃 of 𝜆 individuals each 
having a potential hyperparameter configuration 
encoded in form of a chromosome (e.g. real-valued 
or integer vectors). The fundamental evolution cycle 
comprises of: 
 

1. Initialization: A random population can be 
created or a heuristic seeding creates a 
population. 

2. Evaluation (Fitness 
Assessment): Training (and often, 
evaluation) a DL model is done by using 
each individual configuration of a 
particular individual. Its performance is 
measured by a fitness (e.g., the validation 
accuracy or negative loss or some 
combination of the two such as the F1-
score). 

3. Selection: Parents are chosen as the fittest 
𝜇 of the population (or 𝜇 +  𝜆). This is the 
principle of the survival of the fittest. 

4. Variation (Crossover & Mutation): 
o Crossover 

(Recombination): The 
exploration of recombination of 
promising traits is achieved by 
having parent chromosomes 
combined to give offspring. This 
may be single-point or uniform or 
simulated binary crossover. 

o Mutation: It adds random 
perturbations to search space 
offspring chromosomes, and thus 
keeps population diversity intact 
and allows new areas of the search 
space to be explored. Even the 
strength of mutation may be 
adaptive. 

5. Replacement: The new generation of 
children becomes the population of the 
following generation. 

The same is repeated in the number of prescribed 
generations or until convergence. The article by 
Shalini et al., (2024) offers the background 
implementation and examination of these ideas in 
relation to deep learning models and evaluates their 
efficiency based on the conventional frameworks. 

 
3. Integration with Deep Learning Workflows 
The methods of application of ES to DL raise a 
delicate selection of design in the cross over of 
evolutionary computation and neural network 
training (Ghori, 2019; Shalini et al., 2024): 

 Representation (Encoding): What is the 
encoding in the chromosome of 
hyperparameters? This may have 
continuous parameters (learning rate), 
ordinal parameters (number of layers), and 
categorical parameters (optimizer used, 
activation function). The mixed encoding 
schemes are prevalent. 

 Fitness Evaluation: The impediment of 
the major calculation. The cost reduction 
strategies include: 

o Low-Fidelity 
Evaluation: Performing training 
with smaller epochs, training on 
fewer data, or training on a 
smaller proxy model. 

o Surrogate Models: Directing the 
evolutionary search with a model 
that is more inexpensive to assess 
(e.g., a Gaussian Process), a 
concept similar to Bayesian 
optimization. 

o Parallelization: ES are 
embarrassing parallel that the 
fitness of individuals can be 
assessed independently at various 
computing nodes. This goes along 
with the requirement of scalable 
processing of big data analytics 
(Ghori, 2021) and distributed IoT 
systems. 

 Specialized ES Variants for DL: 
o Covariance Matrix Adaptation 

Evolution Strategy (CMA-
ES): It is especially successful 
when a continuous optimization is 
desired, and the mutation 
distribution is modified to 
conform to the form of the fitness 
landscape. 

o Neuroevolution: Does not only 
evolve the parameters of tunes, 
but also the space of neural 
architectures (e.g. the number and 
kind of layers, connections, etc.). 
It may be regarded as an even 
bigger task of optimization, as 
complex as implementing 
efficient hybrid signal processing 
systems (Sardesai and Gedam, 
2025). 
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4. Comparative Analysis with Other HPO 
Methods 
We place ES in the bigger scope of HPO: 

 vs. Random Search: ES provides directed 
search. As much as random search can be 
used in parallel, it does not have provisions 
to take advantage of discovered solutions 
that are good. ES systematically enhances 
the population in a long-term. 

 vs. Bayesian Optimization (BO): BO 
develops a probabilistic model of the 
objective to be used in search. It is usually 
sample-efficient in low-dimensional 
spaces, and may have problems with high 
dimensionality, discrete/categorical 
parameters and parallelization. ES works 
best in non-differentiable, high 
dimensional spaces and is also parallel by 
nature. The advantage of BO-SVM 
(Sardesai and Gedam, 2025) is the fact that 
BO is more focused via continuous tuning, 
but ES is more general and more 
exploratory. 

 vs. Gradient-Based 
Optimization: Algorithms such as 
Hypergradients need the loss mapping 
between hyperparameter and validation to 
be differentiable; this does not necessarily 
hold (e.g. discrete architectural decisions). 
ES is not derivative-based hence can be 
applied across the board. 
 

5. Empirical Applications and Domain-Specific 
Insights 
ES have proven their performance in the avenues 
covered in the literature: 

1. Computer Vision & Image 
Processing: Turbo CNN architectures 
CNNs such as ResNet50, InceptionV3 are 
optimized on a task (such as Content-Based 
Image Retrieval (CBIR)) (Marathe et al., 
2022) or radiomics features calculators. ES 
has the ability to optimize retrieval 
accuracy by adjusting their kernel size, 
filter bank density and dropout rates or 
diagnostic AUC. 

2. Time-Series & Financial 
Forecasting: Training LSTM/GRU 
networks to predict multivariate time-series 
(Ghori, 2019) e.g. stock price or electricity 
demand. Such hyperparameters as 
sequence length, the number of hidden 
units, or learning rate schedule are of great 
importance and can be effectively left to the 
evolutionary search (Ghori, 2023; Ghule et 
al., 2024). 

3. Medical Diagnostics: ES can produce 
optimal not only the hyperparameters of a 
classifier (e.g. in a Gradient Boosting 

model) but also parameters in the upstream 
step of features extraction and selection. 

4. Multimodal & Hybrid Systems: Using 
Multimodal Machine Learning to optimize 
the complex systems that combine the data 
acquired through various modalities one of 
the primary challenges (Sardesai et al., 
2025). ES is able to find the best fusion 
weights, architecture branches and training 
schedules of models that combine, say, 
models of image and sensor data on IoT 
networks (Sardesai et al., 2025; Shalini et 
al., 2023). 

5. Resource-Constrained Environments: In 
VANETs, models deployed at the edges of 
IoT devices, or apps (which can be specific 
to applications, e.g., a lightbulb, a car tire) 
must have a balance between quality and 
latency, as well as between power usage 
and power usage (Sheela et al., 2023). 
Pareto-optimal trade-offs between these 
objectives competing with each other can 
be determined using multi-objective ES 
(e.g., NSGA-II). 
 

6. Challenges and Limitations 
Irrespective of their strengths, ES have great 
challenges including (Puchakayala, 2022; Ghule, 
2025): 

 Computational Cost: In every fitness 
evaluation, training a neural network is 
necessary resulting in enormous 
computational costs despite parallelization. 
This is certain to be prohibitive in very 
large models (e.g. foundation models). 

 Design of Genetic Operators: Crossover 
and mutation operators depend during 
implications greatly on the problem. The 
lack of a good design may result in early 
agreement or a lack of progress. 

 Fitness Function Design: It is not trivial to 
construct a fitness function that 
approximates the final objective (e.g. not 
only the validation accuracy but also the 
size of the model, inference speed, or other 
factors, and fairness). 

 Theoretical Underpinnings: In 
comparison with convex optimization, the 
convergence properties of ES on non-
convex DL loss landscapes are weaker. 
 

7. Conclusion and Future Directions 
Evolutionary Strategies are a strong and versatile 
concept of addressing the essential problem of 
hyperparameter optimization in deep learning. 
Similar to illustrative precedents such as that of 
Shalini et al., (2024) and corroborated by more or 
less analogous progress in corresponding sub-
domains, ES are a good competitor at complex, 
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high-dimensional, non-differentiable search space. 
Computational cost is also a limitation, although, as 
progress has been made in parallel computing, 
surrogate modelling and algorithmic design, this is 
gradually being addressed. With further progress in 
the direction of deep learning, ES will be an 
invaluable addition to the lineup of AutoML tools, 
which allows to generate more effective, powerful, 
and efficient AI systems in the fields of finance, 
healthcare, IoT, and others. 
ES of DL optimization has a bright future and is 
oriented to increased integration and even 
sophistication: 

 Hybrid ES-BO Methods: Integrating the 
global exploration capability of ES with the 
local and sample effective exploitation of 
BO. 

 Evolution for Foundation Models and 
LLMs: Various methods of developing 
scalable origin variants of ES to amend 
prompt techniques, adapter planning, or 
training setup to big language and vision 
models. 

 Sustainable AI: Training and inference 
directly with the goal of minimizing energy 
use and carbon footprint using ES, as part 
of the goal of the responsible AI initiative 
(Puchakayala, 2022). 

 Generative Models in the Loop: Trying to 
use Generative AI (Puchakayala, 2024) or 
GANs to model and suggest new and better 
solutions of neural architecture using an 
evolutionary loop. 

 Real-Time Adaptation: In case of systems 
such as autonomous vehicles or adaptive 
cognitive radio networks (Shalini et al., 
2025), the model parameters used in online 
ES would continuously change with 
changing data distributions of the 
environment. 
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