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Abstract: The effectiveness of Deep Learning (DL) models is fundamentally determined by the set of their
hyperparameters, which include the settings, which control the learning process and the structure, i.e. the learning
rate, network depth, dropout rate, and the choice of the optimizer. Hyperparameter optimization (HPO) may use
manual and grid search techniques, which are often computationally infeasible and incapable of solving complex
and high-dimensional search spaces. In this paper, Evolutionary Strategies (ES) is reviewed and analyzed as a
powerful, population-based meta-heuristic method of automated HPO in DL. Based on biological evolution, ES
uses selection, crossover and mutation mechanisms to repeatedly modify a population of candidate
hyperparameter combinations to areas of the performance landscape that are optimal. The underlying
methodology that we synthesize includes the knowledge of other adjacent areas such as Bayesian optimization in
tuning of SVM, multimodal learning problems, or any other area where efficient model tuning is needed. The
article has presented the most important types of ES variants in a systematized discussion (e.g., Genetic
Algorithms, Covariance Matrix Adaptation Evolution Strategy), how they can be combined with DL training
pipelines and have missed the comparison of the performance of these two categories of HPO with other types of
HPO such as Random Search, Bayesian Optimization, and Gradient-Based Optimization. Empirical studies in a
wide variety of fields (including image registration (where CNNs are used) and time-series prediction (where
LSTMs are used) and radiomics-based medical disease diagnostics show that ES is always able to determine high-
performing models, and in many cases, it has a better exploration behavior in rugged, non-convex search spaces.
Nonetheless, they have issues, such as, the cost per evaluation is too high, they have to be parallelized, and
developed efficient fitness functions and genetic representation of neural architectures. The paper ends by giving
a list of future research directions on the border of evolutionary computation and DL, including neuroevolution
to optimize joint architecture and parameter search and multi-objective optimization to find balance between
accuracy and efficiency, and the generalization of such concepts to apply to emergent models in finance, IoT
systems, and multimodal AL

Keywords: Evolutionary Strategies, Hyperparameter Optimization, Deep Learning, Genetic Algorithms, Meta-
Heuristics, Neural Architecture Search, Automated Machine Learning (AutoML), Model Tuning.

1. Introduction

Tuning deep learning models has become a critical
researcher limit within Automated Machine
Learning (AutoML), and has graduated out of an
empirical practice to be the black art of the field. The
model also has hyper parameters that are
independent of its trainable weights and which
determine its capacity, regularization and learning
behaviors. The proper choice of values is essential
in the process of attaining the highest performance,
generalization, and training performance. Old
techniques such as manual tuning cannot be scaled
amongst others whereas exhaustive grid search
cannot be solved using computer when the
dimension exceeds a high value. Random search is

more effective, but not directed to exploration
(Ghori, 2021; Nataraj et al., 2022).

Another algorithm that can be used as an alternative
with an equally powerful offering is Evolutionary
Strategies (ES), a category of population-based
optimization algorithms that are motivated by the
Darwinian process of evolution. ES is able to
explore the complex, discontinuous and noisy search
space by keeping a population of candidate solutions
(hyperparameter settings), genetic operators acting
on them, and the fittest surviving into the next
generation (Puchakayala, 2022; Shalini & Patil,
2021). The paper examines the theory, use, and the
effect of ES as applied in optimization of the DL
parameters. We place it in the context of the wider
field of optimizing the ML as a system, with
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parallels to similar optimization of nearby systems
such as optimization of Bayesian Optimized SVM
(BO-SVM) to tune classifiers (Sardesai and Gedam,
2025), the challenge of optimizing complex systems
such as Cognitive Radio Networks (Shalini et al.,
2025), and the ubiquitous issue of optimization of
model architecture in a wide range of areas like
financial prediction and medical image analysis
(Ghori, 2019).

2. Theoretical Foundations of Evolutionary
Strategies

ES act on a population P of A individuals each
having a potential hyperparameter configuration
encoded in form of a chromosome (e.g. real-valued
or integer vectors). The fundamental evolution cycle
comprises of:

1. Initialization: A random population can be
created or a heuristic seeding creates a
population.

2. Evaluation (Fitness
Assessment):  Training (and  often,
evaluation) a DL model is done by using
each individual configuration of a
particular individual. Its performance is
measured by a fitness (e.g., the validation
accuracy or negative loss or some
combination of the two such as the F1-
score).

3. Selection: Parents are chosen as the fittest
u of the population (or u + A). This is the
principle of the survival of the fittest.

4. Variation (Crossover & Mutation):

o Crossover
(Recombination): The
exploration of recombination of
promising traits is achieved by
having parent chromosomes
combined to give offspring. This
may be single-point or uniform or
simulated binary crossover.

o Mutation: It adds random
perturbations to search space
offspring chromosomes, and thus
keeps population diversity intact
and allows new areas of the search
space to be explored. Even the
strength of mutation may be
adaptive.

5. Replacement: The new generation of
children becomes the population of the
following generation.

The same is repeated in the number of prescribed
generations or until convergence. The article by
Shalini et al., (2024) offers the background
implementation and examination of these ideas in
relation to deep learning models and evaluates their
efficiency based on the conventional frameworks.
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3. Integration with Deep Learning Workflows
The methods of application of ES to DL raise a
delicate selection of design in the cross over of
evolutionary computation and neural network
training (Ghori, 2019; Shalini et al., 2024):

e Representation (Encoding): What is the
encoding in the chromosome of
hyperparameters?  This may  have
continuous parameters (learning rate),
ordinal parameters (number of layers), and
categorical parameters (optimizer used,
activation function). The mixed encoding
schemes are prevalent.

e Fitness Evaluation: The impediment of
the major calculation. The cost reduction
strategies include:

o Low-Fidelity
Evaluation: Performing training
with smaller epochs, training on
fewer data, or training on a
smaller proxy model.

o Surrogate Models: Directing the
evolutionary search with a model
that is more inexpensive to assess
(e.g., a Gaussian Process), a
concept similar to Bayesian
optimization.

o Parallelization: ES are
embarrassing parallel that the
fitness of individuals can be
assessed independently at various
computing nodes. This goes along
with the requirement of scalable
processing of big data analytics
(Ghori, 2021) and distributed IloT
systems.

e  Specialized ES Variants for DL:

o Covariance Matrix Adaptation
Evolution Strategy (CMA-
ES): It is especially successful
when a continuous optimization is
desired, and the mutation
distribution is modified to
conform to the form of the fitness
landscape.

o Neuroevolution: Does not only
evolve the parameters of tunes,
but also the space of neural
architectures (e.g. the number and
kind of layers, connections, etc.).
It may be regarded as an even
bigger task of optimization, as
complex as implementing
efficient hybrid signal processing
systems (Sardesai and Gedam,
2025).
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4. Comparative Analysis with Other HPO
Methods
We place ES in the bigger scope of HPO:

vs. Random Search: ES provides directed
search. As much as random search can be
used in parallel, it does not have provisions
to take advantage of discovered solutions
that are good. ES systematically enhances
the population in a long-term.

vs. Bayesian Optimization (BO): BO
develops a probabilistic model of the
objective to be used in search. It is usually
sample-efficient in  low-dimensional
spaces, and may have problems with high
dimensionality, discrete/categorical
parameters and parallelization. ES works
best in non-differentiable, high
dimensional spaces and is also parallel by
nature. The advantage of BO-SVM
(Sardesai and Gedam, 2025) is the fact that
BO is more focused via continuous tuning,

but ES is more general and more
exploratory.
vs. Gradient-Based

Optimization:  Algorithms such as
Hypergradients need the loss mapping
between hyperparameter and validation to
be differentiable; this does not necessarily
hold (e.g. discrete architectural decisions).
ES is not derivative-based hence can be
applied across the board.

5. Empirical Applications and Domain-Specific

Insights

ES have proven their performance in the avenues
covered in the literature:

1.

Computer Vision & Image
Processing: Turbo CNN architectures
CNN s such as ResNet50, InceptionV3 are
optimized on a task (such as Content-Based
Image Retrieval (CBIR)) (Marathe et al.,
2022) or radiomics features calculators. ES
has the ability to optimize retrieval
accuracy by adjusting their kernel size,
filter bank density and dropout rates or

diagnostic AUC.
Time-Series & Financial
Forecasting: Training  LSTM/GRU

networks to predict multivariate time-series
(Ghori, 2019) e.g. stock price or electricity
demand. Such  hyperparameters as
sequence length, the number of hidden
units, or learning rate schedule are of great
importance and can be effectively left to the
evolutionary search (Ghori, 2023; Ghule et
al., 2024).

Medical Diagnostics: ES can produce
optimal not only the hyperparameters of a
classifier (e.g. in a Gradient Boosting
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model) but also parameters in the upstream
step of features extraction and selection.
Multimodal & Hybrid Systems: Using
Multimodal Machine Learning to optimize
the complex systems that combine the data
acquired through various modalities one of
the primary challenges (Sardesai et al.,
2025). ES is able to find the best fusion
weights, architecture branches and training
schedules of models that combine, say,
models of image and sensor data on IoT
networks (Sardesai et al., 2025; Shalini et
al., 2023).

Resource-Constrained Environments: In
VANETs, models deployed at the edges of
IoT devices, or apps (which can be specific
to applications, e.g., a lightbulb, a car tire)
must have a balance between quality and
latency, as well as between power usage
and power usage (Sheela et al., 2023).
Pareto-optimal trade-offs between these
objectives competing with each other can
be determined using multi-objective ES
(e.g., NSGA-II).

6. Challenges and Limitations
Irrespective  of their strengths, ES have great
challenges including (Puchakayala, 2022; Ghule,

2025):

Computational Cost: In every fitness
evaluation, training a neural network is
necessary  resulting in  enormous
computational costs despite parallelization.
This is certain to be prohibitive in very
large models (e.g. foundation models).
Design of Genetic Operators: Crossover
and mutation operators depend during
implications greatly on the problem. The
lack of a good design may result in early
agreement or a lack of progress.

Fitness Function Design: 1t is not trivial to
construct a fitness function that
approximates the final objective (e.g. not
only the validation accuracy but also the
size of the model, inference speed, or other
factors, and fairness).

Theoretical Underpinnings: In
comparison with convex optimization, the
convergence properties of ES on non-
convex DL loss landscapes are weaker.

7. Conclusion and Future Directions

Evolutionary Strategies are a strong and versatile
concept of addressing the essential problem of
hyperparameter optimization in deep learning.
Similar to illustrative precedents such as that of
Shalini et al., (2024) and corroborated by more or
less analogous progress in corresponding sub-
domains, ES are a good competitor at complex,
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high-dimensional, non-differentiable search space.
Computational cost is also a limitation, although, as
progress has been made in parallel computing,
surrogate modelling and algorithmic design, this is
gradually being addressed. With further progress in
the direction of deep learning, ES will be an
invaluable addition to the lineup of AutoML tools,
which allows to generate more effective, powerful,
and efficient Al systems in the fields of finance,
healthcare, 10T, and others.

ES of DL optimization has a bright future and is

oriented

to increased integration and even

sophistication:

Hybrid ES-BO Methods: Integrating the
global exploration capability of ES with the
local and sample effective exploitation of
BO.

Evolution for Foundation Models and
LLMs: Various methods of developing
scalable origin variants of ES to amend
prompt techniques, adapter planning, or
training setup to big language and vision
models.

Sustainable AI: Training and inference
directly with the goal of minimizing energy
use and carbon footprint using ES, as part
of the goal of the responsible Al initiative
(Puchakayala, 2022).

Generative Models in the Loop: Trying to
use Generative Al (Puchakayala, 2024) or
GANSs to model and suggest new and better
solutions of neural architecture using an
evolutionary loop.

Real-Time Adaptation: In case of systems
such as autonomous vehicles or adaptive
cognitive radio networks (Shalini et al.,
2025), the model parameters used in online
ES would continuously change with
changing data distributions of the
environment.
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