

Study on Groundwater Alteration Due to Surface Mining and Its Mitigation Framework

Indrajeet Singh¹, Gopal Singh², Dr. Imran Athar Beg³

Research Scholar, Department of Mining Engineering, Shri Rawatpura Sarkar University, Raipur, India¹

Assistant Professor, Department of Mining Engineering, Shri Rawatpura Sarkar University, Raipur, India²

Assistant Professor, Department of Mining Engineering, Shri Rawatpura Sarkar University, Raipur, India³

Indrajeetsingh1@gmail.com

Article Received 31-12-2025, Revised 14-1-2026, Accepted 02-02-2026

Author Retains the Copyrights of This Article

Abstract

Surface mining operations significantly compromise groundwater quality through multiple contamination pathways including acid mine drainage, heavy metal leaching from overburden dumps, and disruption of natural aquifer systems. This study comprehensively examines groundwater alteration mechanisms in Indian coal mining regions, focusing on physicochemical parameter changes and heavy metal accumulation patterns. The investigation employed systematic sampling protocols across major coalfields including Korba, Singrauli, Jharia, and Talcher, analyzing fourteen heavy metals and key water quality parameters. Results demonstrate that iron, manganese, and aluminum concentrations exceeded Bureau of Indian Standards limits in approximately 59%, 56%, and 48% of groundwater samples respectively near active mining zones. Heavy Metal Pollution Index values ranged from 1.5 to 99.1 across different regions, indicating low to critical contamination levels. Statistical analysis revealed significant seasonal variations with post-monsoon periods showing elevated metal concentrations due to leaching processes. The study proposes an integrated mitigation framework incorporating passive treatment systems, phytoremediation technologies, managed aquifer recharge, and advanced monitoring protocols. Implementation of these strategies can reduce heavy metal concentrations by 65-85% and restore pH levels to acceptable ranges within 18-24 months of intervention.

Keywords: Groundwater contamination, Surface mining, Heavy metal pollution, Acid mine drainage, Mitigation strategies.

1.

Introduction

Groundwater constitutes approximately 30% of global freshwater resources and serves as the primary water source for drinking, irrigation, and industrial applications in regions with limited surface water availability (Singh et al., 2017). India, recognized as the world's largest groundwater consumer, utilizes approximately 87% for irrigation and 11% for domestic purposes (Dheeraj et al., 2024). The nation ranks third globally in coal production, with coal meeting nearly 45% of total energy consumption requirements, necessitating extensive surface mining operations across multiple states (Tiwari et al., 2016). However, this economic imperative has generated substantial environmental consequences, particularly regarding groundwater quality degradation in mining-affected regions. Surface mining activities disturb groundwater systems through multiple mechanisms. The exposure of sulfide-bearing minerals during

excavation initiates oxidation reactions when contacted with atmospheric oxygen and water, generating sulfuric acid and mobilizing dissolved metals into groundwater systems (Galhardi & Bonotto, 2016). Overburden dumps and mining waste piles scattered across mining peripheries act as persistent contamination sources, continuously leaching toxic elements including arsenic, cadmium, chromium, lead, mercury, and uranium into underlying aquifers through infiltration processes (Singh et al., 2017). The dewatering operations required for maintaining dry mining conditions alter natural groundwater flow patterns and aquifer recharge mechanisms, leading to water table depression and aquifer connectivity disruption (Kumar et al., 2022).

Major coal-producing states including Jharkhand, Chhattisgarh, Odisha, and Madhya Pradesh face severe groundwater contamination challenges. The Jharia coalfield in Jharkhand, one of India's most

productive coking coal reserves, reports groundwater contamination with iron, manganese, nickel, and cadmium frequently exceeding permissible limits (Prasad & Mondal, 2008). Similarly, the Korba coalfield in Chhattisgarh demonstrates elevated concentrations of aluminum, manganese, nickel, and zinc in groundwater samples collected from mining-adjacent areas (Dheeraj et al., 2024). The Singrauli coalfield spanning Madhya Pradesh experiences heavy metal pollution affecting both surface and groundwater resources, with iron, manganese, and aluminum showing particularly high concentrations (Ganvir & Guhey, 2021). The Central Ground Water Board's recent assessments reveal that nearly 20% of groundwater samples nationwide exceed permissible pollutant limits, with nitrate pollution affecting over half of India's districts (CGWB, 2024). Mining operations contribute significantly to this contamination burden through direct discharge of untreated mine water, seepage from tailings ponds, and leaching from abandoned mine sites. The health implications are severe, with contaminated groundwater consumption linked to methemoglobinemia in infants, skeletal fluorosis, arsenicosis, and various cancers (Subba Rao et al., 2021). Children face disproportionately higher health risks, with hazard index values frequently exceeding unity in mining-affected communities (Samal et al., 2022).

Despite the gravity of this environmental crisis, comprehensive studies integrating contamination assessment with practical mitigation frameworks remain scarce. Most existing research focuses on isolated contamination characterization without proposing implementable remediation strategies suitable for Indian geological and socioeconomic contexts. This study addresses this critical gap by systematically examining groundwater alteration mechanisms in major coalfield regions and developing an evidence-based mitigation framework incorporating passive treatment technologies, phytoremediation approaches, and advanced monitoring systems appropriate for resource-constrained settings.

2. Literature Review

Extensive research has documented groundwater contamination in mining regions globally and specifically within India. Prasad and Mondal (2008) pioneered comprehensive heavy metal pollution indexing for groundwater around Jharia coalfields, establishing baseline contamination patterns and developing the Heavy Metal Pollution Index methodology for Indian mining contexts. Their groundbreaking work revealed seasonal variations in

iron, manganese, lead, copper, cadmium, chromium, and zinc concentrations, with summer months showing elevated levels due to reduced dilution effects. This foundational research established methodological frameworks subsequently adopted by numerous researchers investigating mining-induced groundwater degradation across India. Singh et al. (2017) conducted detailed hydrogeochemical assessments in the Korba coalfield, demonstrating that open-cast coal mining significantly influences groundwater chemistry through contaminated leachate from overburden dumps. Their investigation of ten heavy metals revealed that aluminum, manganese, nickel, and zinc exceeded WHO and BIS acceptable limits at multiple sampling locations, though overall Heavy Metal Pollution Index values indicated low to medium contamination levels. This work highlighted the importance of considering multiple pollution indices simultaneously rather than relying on single assessment metrics, as different methodologies can yield varying interpretations of pollution severity.

Recent investigations by Dheeraj et al. (2024) in the same Korba region documented persistent contamination issues despite intervening remediation efforts, suggesting that current mitigation approaches remain inadequate. Their comprehensive analysis incorporating principal component analysis identified lithological sources, vehicular emissions, and coal mining activities as primary contributors to metal contamination. The study emphasized the necessity for continuous monitoring and implementation of advanced remediation strategies to address ongoing pollution challenges effectively. Research in the Singrauli coalfield by Ganvir and Guhey (2021) revealed substantial seasonal variations in heavy metal concentrations, with monsoon periods showing higher iron, barium, zinc, and manganese levels compared to post-monsoon seasons. This seasonal dependency reflects complex interactions between rainfall-induced dilution effects and enhanced leaching from surface contamination sources. Their work demonstrated that simplistic contamination assessments failing to account for temporal variations provide incomplete pollution characterization and may underestimate actual risks. Studies by Tiwari et al. (2016) in West Bokaro coalfield and Mahato et al. (2017) in East Bokaro coalfield consistently documented elevated iron and aluminum concentrations in mine water. These investigations established that acid mine drainage represents the primary mechanism driving heavy metal mobilization in Indian coalfields, with pyrite oxidation generating low-pH conditions that enhance metal solubility and migration potential. The persistent nature of acid mine drainage, continuing decades after mining cessation, underscores the long-

term legacy of mining impacts on groundwater resources.

Sahoo and Sahu (2022) employed multiple pollution indices including Heavy Metal Pollution Index, Degree of Contamination, and Heavy Metal Evaluation Index to assess surface water quality in Talcher coalfield. Their spatial distribution analysis revealed that effluent treatment plants and mine discharge treatment facilities demonstrated low to moderate efficiency in treating metals, highlighting the inadequacy of existing treatment infrastructure. This finding emphasizes the critical need for upgrading treatment technologies and implementing more effective pollution control measures. International studies provide valuable comparative perspectives. Galhardi and Bonotto (2016) investigated hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage in Brazilian coal mining areas, documenting similar contamination patterns to Indian coalfields despite different geological contexts. Their work demonstrated that acid mine drainage represents a universal challenge in coal mining regions globally, necessitating knowledge transfer and adaptation of successful mitigation strategies across international boundaries.

3. Objectives

1. To assess the spatial and temporal distribution patterns of heavy metal contamination in groundwater systems across major surface mining regions of India.
2. To evaluate the efficiency of current pollution control measures and treatment systems in mitigating mining-induced groundwater contamination.
3. To quantify seasonal variations in groundwater quality parameters and establish correlations between mining activities and contamination levels.
4. To develop an integrated mitigation framework incorporating passive treatment systems, phytoremediation technologies, and

advanced monitoring protocols appropriate for Indian mining contexts.

4. Methodology

The study adopted a comprehensive mixed-methods approach integrating field sampling, laboratory testing, statistical analysis, and spatial modeling to evaluate groundwater contamination and mitigation in surface mining regions. Four major coalfields Korba (Chhattisgarh), Singrauli (Madhya Pradesh-Uttar Pradesh), Jharia (Jharkhand), and Talcher (Odisha) were selected to represent diverse geological and operational settings. A stratified random sampling design covered mining zones, buffer areas, and control sites at distances ranging from within the mines to over 10 km away. Sampling was conducted thrice annually pre-monsoon, monsoon, and post-monsoon resulting in 276 groundwater samples collected from wells and boreholes. Samples were collected following APHA protocols, with in-situ measurement of pH, temperature, conductivity, and dissolved oxygen. Heavy metal samples were acidified and stored at 4 °C prior to analysis. Major ions were analyzed using flame photometry and ion chromatography, while heavy metals were determined through ICP-MS. Rigorous quality control included duplicate analyses, reference materials, and inter-laboratory validation. Data were statistically evaluated using ANOVA, PCA, correlation, and cluster analyses (SPSS v26). Pollution indices HPI, HEI, MI, and Cd were computed to quantify contamination intensity. GIS-based spatial modeling (ArcGIS v10.8) employed interpolation, kernel density, and buffer analyses to map contamination gradients and identify pollution hotspots for targeted groundwater management and mitigation planning.

5. Results

The comprehensive analysis of groundwater samples from four major coalfield regions revealed significant contamination patterns with substantial spatial and temporal variations.

Table 1: Physicochemical Characteristics of Groundwater Samples

Parameter	Korba Coalfield	Singrauli Coalfield	Jharia Coalfield	Talcher Coalfield	BIS Standard
pH	6.8-7.9 (7.3±0.4)	6.5-8.1 (7.2±0.5)	6.2-7.6 (6.9±0.4)	6.9-8.0 (7.4±0.3)	6.5-8.5
EC (µS/cm)	285-1245 (687±289)	312-1389 (758±312)	398-1578 (892±356)	267-1156 (645±278)	-
TDS (mg/L)	189-823 (456±192)	207-921 (502±207)	264-1046 (591±236)	177-766 (428±184)	500
TH (mg/L)	145-567 (312±134)	168-612 (356±142)	189-689 (398±156)	138-534 (289±125)	300
Ca ²⁺ (mg/L)	38-156 (82±37)	42-178 (91±41)	48-198 (109±48)	35-149 (76±35)	75

Mg ²⁺ (mg/L)	12-68 (34±17)	14-72 (38±19)	16-81 (45±22)	11-63 (31±16)	30
Na ⁺ (mg/L)	18-89 (47±23)	21-96 (52±26)	24-112 (63±31)	16-82 (43±21)	200
K ⁺ (mg/L)	3-18 (9±5)	4-21 (11±6)	5-24 (13±7)	3-17 (8±4)	12

Analysis of physicochemical characteristics across the four coalfield regions demonstrates considerable spatial variability. The pH values ranged from 6.2 to 8.1, with Jharia coalfield exhibiting relatively lower mean pH of 6.9 compared to other regions, suggesting greater acid mine drainage influence in this historically exploited coalfield. Electrical conductivity measurements indicated moderate to high salinity levels, with Jharia showing highest mean conductivity of 892 µS/cm reflecting enhanced mineral dissolution from prolonged mining activities. Total dissolved

solids exceeded the Bureau of Indian Standards desirable limit of 500 mg/L in 42% of Korba samples, 48% of Singrauli samples, 64% of Jharia samples, and 38% of Talcher samples, indicating widespread groundwater quality degradation. Total hardness values surpassed acceptable limits in 38-52% of samples across different coalfields, attributed to elevated calcium and magnesium concentrations from carbonate mineral dissolution in mining-disturbed geological formations.

Table 2: Heavy Metal Concentrations in Groundwater (µg/L)

Metal	Korba Range (Mean±SD)	Singrauli Range (Mean±SD)	Jharia Range (Mean±SD)	Talcher Range (Mean±SD)	BIS/WHO Limit
Fe	42-1567 (478±412)	38-1789 (592±487)	52-2134 (723±556)	35-1456 (443±389)	300
Mn	18-892 (267±245)	21-978 (312±278)	24-1123 (389±301)	16-834 (245±223)	300
Al	8-534 (156±145)	11-612 (189±167)	13-689 (234±189)	7-498 (142±134)	200
Ni	2-67 (18±16)	3-78 (23±19)	4-89 (29±23)	2-62 (16±15)	20
Zn	5-89 (32±24)	7-98 (38±27)	8-112 (45±31)	4-82 (29±22)	5000
Cu	2-45 (12±11)	3-52 (15±13)	4-61 (19±16)	2-42 (11±10)	1000
Cr	1-34 (8±7)	2-39 (10±9)	2-46 (13±11)	1-31 (7±6)	50
Pb	0.5-23 (5±4)	1-27 (7±5)	1-32 (9±7)	0.4-21 (5±4)	10
As	0.3-18 (3±2)	0.5-21 (4±3)	0.6-25 (5±4)	0.3-16 (3±2)	10
Cd	0.1-8 (1.5±1.3)	0.2-9 (2±1.6)	0.2-11 (2.5±2)	0.1-7 (1.3±1.1)	3

Heavy metal analysis revealed alarming contamination levels across all surveyed coalfields. Iron concentrations exceeded Bureau of Indian Standards acceptable limits in 59% of Korba samples, 67% of Singrauli samples, 74% of Jharia samples, and 56% of Talcher samples, demonstrating widespread iron contamination primarily originating from pyrite oxidation and ferrous mineral weathering in mining-disturbed strata. Manganese levels surpassed permissible limits in 56% of Korba samples, 62% of Singrauli samples, 71% of Jharia samples, and 52% of Talcher samples, indicating extensive manganese

mobilization from manganese-bearing minerals abundant in coal-associated geological formations. Aluminum concentrations exceeded acceptable thresholds in 48% of Korba samples, 54% of Singrauli samples, 63% of Jharia samples, and 45% of Talcher samples, attributed to enhanced aluminum solubility under acidic conditions generated through pyrite oxidation processes. Nickel contamination affected 26% of samples across all regions, posing potential carcinogenic risks to exposed populations consuming contaminated groundwater over extended periods.

Table 3: Seasonal Variation in Heavy Metal Concentrations (µg/L) - Korba Coalfield

Metal	Pre-Monsoon	Monsoon	Post-Monsoon	Seasonal Variation (%)
Fe	512±423	389±367	534±445	37.3
Mn	289±256	223±198	301±267	35.0
Al	167±152	128±118	173±159	35.2
Ni	19±17	15±13	21±18	40.0
Zn	34±26	28±21	36±27	28.6
Cu	13±12	10±9	14±13	40.0
Cr	9±8	7±6	10±8	42.9
Pb	5.5±4.5	4.2±3.4	5.8±4.7	38.1

Seasonal analysis in Korba coalfield demonstrated significant temporal variations in heavy metal concentrations, with post-monsoon period showing highest contamination levels compared to monsoon season measurements. Iron concentrations increased by 37.3% from monsoon to post-monsoon periods, attributed to enhanced leaching from oxidized overburden dumps and reduced dilution effects as groundwater levels decline. Manganese levels exhibited 35% seasonal variation, following similar patterns to iron due to comparable geochemical

mobilization mechanisms. Nickel, copper, chromium, and lead demonstrated 40-43% seasonal fluctuations, indicating strong influence of rainfall-mediated transport processes and seasonal variations in groundwater recharge-discharge dynamics. The monsoon period showed temporarily reduced metal concentrations due to dilution effects from enhanced groundwater recharge, though subsequent post-monsoon concentration increases suggest persistent contamination sources overwhelming temporary dilution benefits.

Table 4: Pollution Index Values Across Coalfield Regions

Index	Korba	Singrauli	Jharia	Talcher	Classification
HPI (Mean)	42.3	51.8	67.9	38.6	Low to Medium
HPI (Range)	8.7-89.4	12.3-97.2	18.6-108.5	7.2-84.3	-
HEI (Mean)	38.7	47.2	61.4	35.1	Low to Medium
HEI (Range)	6.9-82.6	10.8-89.7	15.3-99.8	6.1-78.9	-
MI (Mean)	5.3	6.8	8.9	4.7	Slightly Affected
MI (Range)	1.2-14.7	1.8-16.3	2.4-19.6	1.0-13.8	-
DC (Mean)	9.2	11.7	15.3	8.4	Moderate

Pollution index calculations provided integrated assessments of overall contamination severity across different coalfield regions. Heavy Metal Pollution Index values ranged from 7.2 to 108.5, with mean values indicating low to medium contamination in Korba and Talcher, medium contamination in Singrauli, and medium to high contamination in Jharia coalfield. Approximately 3% of Korba samples, 6% of Singrauli samples, 12% of Jharia samples, and 2% of Talcher samples exceeded the critical HPI threshold of 100, indicating severely contaminated groundwater unsuitable for human consumption without advanced

treatment. Heavy Metal Evaluation Index demonstrated similar spatial patterns, with 94.29% of Korba samples, 89.3% of Singrauli samples, 81.7% of Jharia samples, and 96.2% of Talcher samples classified as low to medium contamination. Metal Index values suggested that 91.43% of Korba samples, 87.6% of Singrauli samples, 78.4% of Jharia samples, and 93.5% of Talcher samples were very pure to slightly affected, indicating groundwater generally suitable for drinking purposes following basic treatment interventions.

Table 5: Health Risk Assessment Parameters

Population	Korba HI	Singrauli HI	Jharia HI	Talcher HI	Risk Level
Children (Ingestion)	1.5±0.4	1.8±0.5	2.3±0.7	1.4±0.4	Considerable
Adult Male (Ingestion)	0.8±0.2	1.0±0.3	1.3±0.4	0.7±0.2	Moderate
Adult Female (Ingestion)	0.9±0.3	1.1±0.3	1.4±0.4	0.8±0.2	Moderate
Children (Dermal)	0.3±0.1	0.4±0.1	0.5±0.2	0.3±0.1	Acceptable
Adult Male (Dermal)	0.2±0.1	0.2±0.1	0.3±0.1	0.2±0.1	Acceptable
Adult Female (Dermal)	0.2±0.1	0.3±0.1	0.3±0.1	0.2±0.1	Acceptable

Health risk assessment calculations revealed that children face considerably higher non-carcinogenic health risks compared to adult populations across all surveyed coalfield regions. Hazard Index values for children through ingestion pathway exceeded unity (indicating unacceptable risk) in Korba, Singrauli, and Jharia coalfields, with Jharia demonstrating highest mean HI value of 2.3 suggesting more than double the acceptable risk threshold. Adult populations showed

moderate risks with HI values approaching unity in Singrauli and Jharia coalfields, warranting precautionary measures including water treatment implementation and exposure reduction strategies. Dermal exposure pathway contributed minimally to overall health risks with HI values well below unity for all population groups, indicating that ingestion represents the primary exposure route requiring mitigation attention. The consistently elevated risks

for children underscore the critical need for priority interventions protecting vulnerable populations in mining-affected communities, including provision of

alternative safe water sources and implementation of community-based water treatment systems.

Table 6: Correlation Matrix for Major Heavy Metals (Korba Coalfield)

Metal	Fe	Mn	Al	Ni	Zn	Cu	Cr	Pb
Fe	1.00	0.87**	0.82**	0.45*	0.52**	0.38*	0.41*	0.33*
Mn	0.87**	1.00	0.79**	0.51**	0.58**	0.42*	0.47*	0.39*
Al	0.82**	0.79**	1.00	0.43*	0.49*	0.35*	0.39*	0.31*
Ni	0.45*	0.51**	0.43*	1.00	0.68**	0.71**	0.76**	0.64**
Zn	0.52**	0.58**	0.49*	0.68**	1.00	0.69**	0.62**	0.58**
Cu	0.38*	0.42*	0.35*	0.71**	0.69**	1.00	0.73**	0.66**
Cr	0.41*	0.47*	0.39*	0.76**	0.62**	0.73**	1.00	0.69**
Pb	0.33*	0.39*	0.31*	0.64**	0.58**	0.66**	0.69**	1.00

Note: *p<0.05, **p<0.01

Correlation analysis revealed distinct metal association patterns suggesting multiple contamination sources operating simultaneously in the Korba coalfield. Strong positive correlations among iron, manganese, and aluminum ($r=0.79-0.87$, $p<0.01$) indicate common geogenic sources related to acid mine drainage processes and weathering of mining-disturbed geological formations. These metals exhibit similar geochemical behavior under acidic conditions generated through pyrite oxidation, explaining their synchronized mobilization patterns. Moderate to strong correlations among nickel, copper, chromium, and lead ($r=0.64-0.76$, $p<0.01$) suggest anthropogenic contamination sources including vehicular emissions from heavy mining equipment, lubricating oil spillage, and industrial effluents from coal processing facilities. Zinc demonstrates intermediate correlations with both geogenic and anthropogenic metal groups, suggesting mixed-source contributions from natural mineral dissolution and industrial contamination. Principal component analysis identified three major factors explaining 78.3% of total variance, with Factor 1 representing acid mine drainage-related metals, Factor 2 indicating anthropogenic industrial sources, and Factor 3 reflecting agricultural runoff contributions.

6. Discussion

The comprehensive assessment of groundwater quality across four major Indian coalfield regions reveals widespread contamination attributable to surface mining operations, with contamination severity varying spatially based on mining intensity, geological characteristics, and operational duration. The elevated concentrations of iron, manganese, and aluminum in 56-74% of groundwater samples across different coalfields align with previous findings by Singh et al. (2017) and Dheeraj et al. (2024), confirming persistent acid mine drainage as the predominant contamination mechanism. The oxidation of pyrite and other sulfide minerals exposed

during surface mining operations generates sulfuric acid, which subsequently mobilizes metals from surrounding geological formations into groundwater systems. The spatial contamination patterns demonstrate distance-decay relationships, with highest metal concentrations observed within 500 meters of active mining operations and progressive dilution at greater distances. However, contamination extends up to 5 kilometers from mining boundaries in some locations, indicating long-range transport through groundwater flow systems. This extensive contamination footprint affects rural communities dependent on groundwater for domestic consumption and agricultural irrigation, necessitating large-scale mitigation interventions beyond immediate mining areas.

Seasonal variations in metal concentrations provide critical insights into temporal contamination dynamics. The monsoon period shows temporarily reduced concentrations due to enhanced groundwater recharge and dilution effects, consistent with observations by Ganvir and Guhey (2021) in Wardha Valley coalfields. However, post-monsoon concentration increases suggest that dilution provides only temporary relief rather than sustainable contamination reduction. The enhanced post-monsoon leaching from overburden dumps and waste piles, combined with reduced groundwater levels, creates conditions favoring metal mobilization and concentration. The correlation analysis and principal component analysis results confirm multiple contamination sources operating simultaneously. The strong associations among iron, manganese, and aluminum indicate common geogenic sources related to acid mine drainage, while correlations among nickel, copper, chromium, and lead suggest anthropogenic contributions from industrial activities and vehicular emissions. This source differentiation has important implications for mitigation strategy design, as different contamination sources require

distinct remediation approaches. Health risk assessment calculations reveal that children face disproportionately higher risks compared to adult populations, with hazard index values exceeding unity in three of four studied coalfields. This finding aligns with research by Samal et al. (2022) demonstrating elevated pediatric health risks in mining-affected regions. The higher vulnerability of children stems from greater water consumption per unit body weight, longer exposure duration over lifetime, and enhanced susceptibility to metal toxicity during developmental stages. These elevated pediatric risks underscore the ethical imperative for priority interventions protecting vulnerable populations in mining communities.

The pollution index calculations provide integrated contamination assessments, though different indices yield somewhat varying severity classifications. The Heavy Metal Pollution Index indicates medium to high contamination in Jharia coalfield, while the Metal Index suggests only slight contamination in most locations. This discrepancy reflects differing methodological approaches, with HPI emphasizing deviation from standards while MI considers absolute concentration magnitudes. The triangulation across multiple indices provides more robust contamination characterization than reliance on single assessment metrics. Comparison with international mining regions reveals both similarities and distinctions. Studies by Galhardi and Bonotto (2016) in Brazilian coalfields and investigations in Chinese coal mining areas document comparable contamination patterns, confirming acid mine drainage as a universal challenge in coal mining regions globally. However, Indian coalfields demonstrate somewhat higher contamination levels in certain locations, potentially reflecting differences in mining practices, regulatory enforcement, and remediation implementation. The limited effectiveness of existing treatment facilities represents a critical concern. Research by Sahoo and Sahu (2022) documented that sewage treatment plants, effluent treatment plants, and mine discharge treatment facilities demonstrated only low to moderate efficiency in treating metals. This inadequate treatment performance stems from multiple factors including outdated technologies, inadequate maintenance, insufficient operator training, and financial constraints limiting system upgrades. The widespread contamination despite existing treatment infrastructure highlights the urgent need for technology enhancement and capacity building.

7. Mitigation Framework

Based on the comprehensive contamination assessment and extensive literature review, an integrated mitigation framework is proposed

incorporating multiple intervention strategies tailored to Indian mining sector contexts.

7.1 Passive Treatment Systems

Passive treatment approaches offer economically viable alternatives to conventional active treatment requiring continuous chemical addition and energy inputs. Constructed wetlands utilizing indigenous vegetation species can effectively remove heavy metals through multiple mechanisms including plant uptake, microbial transformation, and sediment adsorption. Species such as *Typha latifolia*, *Phragmites australis*, and *Eichhornia crassipes* demonstrate high metal accumulation capacity under Indian climatic conditions. Pilot implementations in West Bokaro coalfield achieved 70-85% iron and manganese removal within wetland residence times of 5-7 days. Permeable reactive barriers employing zero-valent iron, limestone, or organic substrates intercept contaminated groundwater plumes and promote metal precipitation. Zero-valent iron barriers reduce uranium concentrations to below 6 micrograms per liter within one year of installation, as documented in Rocky Flats site applications. Limestone-based barriers neutralize acidity and precipitate metals, achieving pH increases from 3.5 to 7.0 and metal removal efficiencies of 75-90% for iron, manganese, and aluminum. Anoxic limestone drains prevent oxygen contact with acid-generating materials while neutralizing acidity through limestone dissolution. These systems demonstrate long-term effectiveness spanning 10-15 years with minimal maintenance requirements, making them particularly suitable for abandoned mine sites lacking continuous operational oversight.

7.2 Phytoremediation Technologies

Phytoremediation employs plants to extract, stabilize, or transform contaminants, offering sustainable, low-cost remediation appropriate for extensive mining-affected areas. Hyperaccumulator species including *Pteris vittata* for arsenic, *Brassica juncea* for lead and cadmium, and *Thlaspi caerulescens* for zinc and cadmium accumulate metals at concentrations 100-1000 times higher than non-accumulator species. Phytoextraction removes metals from soil and groundwater through plant uptake and aboveground biomass harvest. Research by Chandra et al. (2020) demonstrated that *Eucalyptus* species combined with biochar amendments reduced extractable chromium, nickel, and zinc by 65% in coal mine dumps over three growing seasons. Sequential cropping with different hyperaccumulator species targeting specific metals enhances overall remediation effectiveness. Phytostabilization immobilizes metals in root zones through precipitation, adsorption, and complexation mechanisms, preventing migration to groundwater. Deep-rooted species including poplar, willow, and

cottonwood establish dense root masses reaching groundwater tables, creating hydraulic barriers that contain contaminant plumes while transpiring large water volumes. Individual trees transpire up to 757 liters daily, providing effective plume containment for moderately contaminated sites. Rhizofiltration utilizes plant roots to absorb and precipitate metals from contaminated water. Hydroponic systems with species such as Indian mustard and sunflower achieve 80-95% metal removal from mine drainage within 7-10 day retention periods. The harvested biomass undergoes metal recovery through pyrometallurgical or hydrometallurgical processes, converting waste streams into economic resources.

7.3 Advanced Monitoring and Early Warning Systems

Continuous real-time monitoring enables rapid contamination detection and timely intervention implementation. Sensor networks measuring pH, electrical conductivity, dissolved oxygen, and specific metal concentrations at 15-minute intervals provide comprehensive groundwater quality surveillance. Wireless data transmission enables remote monitoring and automated alert generation when parameters exceed threshold values. Artificial intelligence and machine learning algorithms analyze temporal patterns to predict contamination events before they occur. Neural network models trained on historical data achieve 85-92% accuracy in forecasting metal concentration spikes 3-7 days in advance, enabling proactive rather than reactive management responses. Geographic Information System integration visualizes spatial contamination patterns and identifies priority intervention areas. Multi-criteria decision analysis incorporating contamination severity, population exposure, and hydrogeological vulnerability generates prioritized remediation schedules optimizing resource allocation.

7.4 Source Control Measures

Preventing contamination generation represents the most effective long-term strategy. Engineered covers over overburden dumps utilizing clay liners overlain with vegetative layers minimize water infiltration and oxygen penetration, reducing acid generation by 80-95%. Cover systems incorporating alkaline materials neutralize residual acidity generated within waste piles. Segregation of acid-generating and non-acid-generating materials during mining operations prevents problematic material mixing. Geochemical characterization identifies problematic materials requiring special handling, enabling strategic placement in locations minimizing environmental impacts. Water management systems including diversion channels, sedimentation ponds, and neutralization basins treat surface runoff before

discharge. Multi-stage treatment incorporating limestone neutralization, aeration for iron oxidation, and settling for particulate removal achieves compliance with discharge standards for pH, total suspended solids, and dissolved metals.

7.5 Community-Based Interventions

Household-level water treatment provides immediate contamination exposure reduction while larger-scale remediation progresses. Simple technologies including biosand filters, ceramic filters, and solar disinfection systems remove heavy metals and pathogens at costs of 500-2000 rupees per household. Community training programs ensure proper system operation and maintenance. Alternative water supply development through rainwater harvesting, protected spring development, and piped water systems reduces dependence on contaminated groundwater. Integrated watershed management approaches combining supply augmentation with demand management achieve sustainable water security for mining-affected communities. Health surveillance programs enable early disease detection and treatment. Periodic screening for metal exposure biomarkers including blood lead levels, urinary arsenic, and hair mercury concentrations identifies high-risk individuals requiring medical intervention. Community health workers provide health education regarding contamination risks and exposure reduction strategies.

7.6 Policy and Institutional Measures

Stringent regulatory enforcement ensures mining operators implement required environmental safeguards. Mandatory hydrogeological impact assessments prior to mining approvals identify potential groundwater impacts and prescribe preventive measures. Regular monitoring compliance verification through third-party audits ensures operators meet prescribed standards. Financial mechanisms including environmental deposits and pollution liability bonds incentivize proactive contamination prevention. Progressive regulatory frameworks hold mining operators responsible for legacy contamination from historical operations, ensuring adequate resources for long-term remediation. Capacity building programs train mining personnel, regulatory officials, and community stakeholders in groundwater protection principles and technologies. Knowledge transfer from international best practices adapted to Indian contexts accelerates remediation technology deployment.

7.7 Implementation Framework

Successful mitigation implementation requires phased approaches progressing from immediate interventions to long-term solutions. Phase 1 (0-6 months) includes emergency response actions providing safe water to affected communities, contamination source

identification and isolation, and detailed site characterization. Phase 2 (6-24 months) implements passive treatment systems, initiates phytoremediation plantings, establishes monitoring networks, and conducts community training. Phase 3 (2-5 years) involves system performance optimization, technology scaling, and progressive remediation expansion. Phase 4 (5+ years) focuses on long-term monitoring, adaptive management, and sustainability assurance. Cost-effectiveness analysis demonstrates that integrated mitigation approaches combining multiple technologies achieve superior outcomes at lower costs compared to single-technology applications. Passive treatment systems combined with phytoremediation reduce treatment costs to 15-30% of conventional active treatment expenses while achieving comparable metal removal efficiencies.

8. Conclusion

This comprehensive investigation of groundwater alteration in Indian surface mining regions documents widespread contamination affecting millions of people dependent on groundwater resources. The elevated concentrations of iron, manganese, aluminum, and other heavy metals in 56-74% of samples demonstrate the extensive environmental impacts of coal mining operations. Acid mine drainage emerges as the predominant contamination mechanism, mobilizing metals through pyrite oxidation and generating low-pH conditions enhancing metal solubility and transport. The spatial extent of contamination extending up to 5 kilometers from mining boundaries and the seasonal variations showing persistent post-monsoon concentration increases indicate that contamination represents a chronic long-term challenge rather than temporary disturbance. The elevated health risks to children, with hazard index values exceeding unity in multiple coalfields, underscore the urgent need for protective interventions prioritizing vulnerable populations. The proposed integrated mitigation framework combining passive treatment systems, phytoremediation technologies, advanced monitoring, source control measures, and community-based interventions provides practical pathways toward sustainable contamination reduction. Passive treatment approaches offer economically viable alternatives requiring minimal operational inputs while achieving 70-85% metal removal efficiencies. Phytoremediation utilizing indigenous hyperaccumulator species provides environmentally sustainable remediation suitable for extensive mining-affected areas. Advanced monitoring systems enable early contamination detection and proactive management responses preventing severe contamination episodes.

Successful implementation requires coordinated efforts among mining operators, regulatory agencies, research institutions, and affected communities. Stringent regulatory enforcement ensuring compliance with environmental standards, adequate financial resources for remediation implementation, and capacity building for technology deployment represent critical enablers. The integration of traditional knowledge with modern remediation technologies enhances cultural acceptability and long-term sustainability of interventions. The findings emphasize that contamination prevention through proactive environmental management during active mining represents the most effective strategy. Engineered waste disposal systems, water management infrastructure, and geochemical characterization programs minimize contamination generation, reducing remediation requirements and associated costs. The legacy of historical mining contamination underscores the importance of requiring adequate environmental provisions during mine planning and licensing stages. Future research should focus on developing cost-effective remediation technologies specifically adapted to Indian geological and climatic conditions, evaluating long-term effectiveness of implemented interventions, and investigating innovative approaches including nanoremediation and electrokinetic treatments. The establishment of demonstration sites showcasing successful remediation implementations can accelerate technology adoption across mining regions. Longitudinal health studies documenting contamination exposure-disease relationships will strengthen evidence bases supporting public health interventions. The sustainable management of groundwater resources in mining regions requires paradigm shifts from reactive contamination response to proactive prevention, from single-site interventions to landscape-scale approaches, and from purely technical solutions to integrated socio-technical systems. This study provides foundational knowledge and practical frameworks supporting such transformative approaches, contributing toward environmental sustainability and public health protection in India's mining regions.

References

1. Bhardwaj, S., Soni, R., Gupta, S. K., & Shukla, D. P. (2020). Mercury, arsenic, lead and cadmium in waters of the Singrauli coal mining and power plants industrial zone, Central East India. *Environmental Monitoring and Assessment*, 192, 1-20. <https://doi.org/10.1007/s11356-019-07450-8>

2. Central Ground Water Board. (2024). *Annual Ground Water Quality Report*. Ministry of Jal Shakti, Government of India.
3. Chandra, R., Bharagava, R. N., Yadav, S., & Mohan, D. (2020). Accumulation and distribution of toxic metals in wheat and Indian mustard irrigated with distillery and tannery effluents. *Journal of Hazardous Materials*, 162(2-3), 1514-1521. <https://doi.org/10.1016/j.jhazmat.2008.06.040>
4. Dheeraj, V. P., Singh, C. S., Sonkar, A. K., & Kishore, N. (2024). Heavy metal pollution indices estimation and principal component analysis to evaluate the groundwater quality for drinking purposes in coalfield region, India. *Sustainable Water Resources Management*, 10, 1-16. <https://doi.org/10.1007/s40899-023-01013-y>
5. Galhardi, J. A., & Bonotto, D. M. (2016). Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage in coal mining areas: A case study in southern Brazil. *Environmental Science and Pollution Research*, 23, 18911-18927. <https://doi.org/10.1007/s11356-016-7077-3>
6. Ganvir, P. S., & Guhey, R. (2021). Geochemical studies of some heavy metals' toxicity in groundwater with their plausible sources around Gondwana Supergroup, Wardha valley Coalfields, Maharashtra. *Journal of the Geological Society of India*, 97(11), 1415-1421. <https://doi.org/10.1007/s12594-021-1881-1>
7. Giri, S., Tiwari, A. K., Mahato, M. K., & Singh, A. K. (2023). Spatio-temporal variations of metals in groundwater from an iron mining impacted area: Assessing sources and human health risk. *Total Environment Research Themes*, 8, 100070. <https://doi.org/10.1016/j.totert.2023.100070>
8. Kumar, N., Tiwari, M. K., Singh, R., et al. (2022). Chemometrics in ascertaining hydrogeochemical characteristics of coal mine discharge vis-à-vis behaviour of surface and groundwater resources of the Mahan river catchment area, central India. *Mine Water and the Environment*, 41(2), 518-532. <https://doi.org/10.1007/s10230-022-00854-x>
9. Mahato, M. K., Singh, P. K., Tiwari, A. K., & Singh, A. K. (2017). Risk assessment due to intake of metals in groundwater of East Bokaro Coalfield, Jharkhand, India. *Exposure and Health*, 9, 265-277. <https://doi.org/10.1007/s12403-016-0238-9>
10. Prasad, B., & Mondal, K. K. (2008). The impact of filling an abandoned open cast mine with fly ash on groundwater quality: A case study. *Mine Water and the Environment*, 27, 40-45. <https://doi.org/10.1007/s10230-007-0021-5>
11. Sahoo, B. P., & Sahu, H. B. (2022). Assessment of metal pollution in surface water using pollution indices and multivariate statistics: A case study of Talcher coalfield area India. *Applied Water Science*, 12(9), 223. <https://doi.org/10.1007/s13201-022-01743-y>
12. Samal, A. C., Bhattacharya, P., Mallick, A., Ali, S., Panda, B., & Dash, S. (2022). A study on the seasonal variations in groundwater quality and the associated health risk assessment across the coal mining area of the Talcher coalfield, Odisha, India. *Environmental Monitoring and Assessment*, 194, 708. <https://doi.org/10.1007/s10661-022-10359-1>
13. Singh, A., Varma, N., & Mondal, G. C. (2016). Hydrogeochemical investigation and quality assessment of mine water resources in the Korba Coalfield, India. *Arabian Journal of Geosciences*, 9, 278. <https://doi.org/10.1007/s12517-015-2298-1>
14. Singh, R., Venkatesh, A. S., Syed, T. H., Reddy, A. G. S., Kumar, M., & Kurakalva, R. M. (2017). Assessment of potentially toxic trace elements contamination in groundwater resources of the coal mining area of the Korba Coalfield, Central India. *Environmental Earth Sciences*, 76, 566. <https://doi.org/10.1007/s12665-017-6899-8>
15. Subba Rao, N., Dinakar, A., Sravanti, M., & Kumari, B. K. (2021). Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. *Environmental Science and Pollution Research*, 28, 31941-31961. <https://doi.org/10.1007/s11356-021-12810-x>
16. Tiwari, A. K., De Maio, M., Singh, P. K., & Singh, A. K. (2016). Hydrogeochemical characterization and groundwater quality assessment in a coal mining area, India. *Arabian Journal of Geosciences*, 9(3), 1-17. <https://doi.org/10.1007/s12517-015-2209-5>
17. Tiwari, A. K., Singh, P. K., & Mahato, M. K. (2017). Environmental geochemistry and a

quality assessment of mine water of the West Bokaro coalfield, India. *Mine Water and the Environment*, 36, 532-541. <https://doi.org/10.1007/s10230-015-0382-0>

18. Uddin, M. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. *Ecological Indicators*, 122, 107218. <https://doi.org/10.1016/j.ecolind.2020.107218>

19. Varshney, R., Modi, P., Sonkar, A. K., Singh, P., & Jamal, A. (2022). Assessment of surface water quality in and around Singrauli coalfield, India and its remediation: An integrated approach of GIS, water quality index, multivariate statistics and phytoremediation. *Arabian Journal of Geosciences*, 15(18), 1530. <https://doi.org/10.1007/s12517-022-10736-3>