
 
 
 
 
 

International Journal of Multidisciplinary Engineering in Current 

Research 
ISSN NO: 2456 - 4265 

Volume 5, Issue 2, Febrauary 2020, http://ijmec.com/ 
 

1 
 

Online Weighted Extreme MachineLearning Solution for Active Learning 

from Unbalanced Data 

Dr.J.Chadnra Sekhar1, Mrs.N.R.L.Prasanna2, Mr.N.KanthiPriya Darshini3, Mr.V.K.Pratap4 

Professor & HOD1, Assistant Professor2,3,4 

Department of CSE 

NRI INSTITUTE OF TECHNOLOGY, Visadala X Road, Medikonduru(M), Guntur (Dist),  Andhra Pradesh 522438. 

 

Abstract 

A well-known fact is that active learning may simultaneously 

increase the quality of a classification model and reduce the 

complexity of training examples. Several prior research, on the 

other hand, have shown that an unbalanced distribution of data 

may readily disturb the performance of active learning. There are 

several current unbalanced active learning systems that have 

either poor performance or a large time consumption. Using the 

extreme learning machine (ELM) classification model, this 

research presents an effective method dubbed active online-

weighted ELM (AOW-ELM). The main contributions of this 

paper include: 1) a detailed discussion of the reasons why an 

imbalanced instance distribution can disrupt active learning and 

its influencing factors; 2) the use of the hierarchical clustering 

technique to select initially labelled instances in order to avoid 

the missed cluster effect and the cold start phenomenon as much 

as possible; and 3) the selection of the weighted ELM (WELM) 

as the base classifier to ensure the The proposed AOW-ELM 

approach outperforms many state-of-the-art active learning 

techniques created expressly for class imbalance in experiments 

on 32 binary-class data sets with various imbalance ratios. 

Index Terms— When it comes to a student's ability to learn and 

progress, there are a number of factors to consider. 

INTRODUCTION 

In situations where huge numbers of cases may be 

cheaply gathered but labelling them is expensive 

and/or time consuming, ACTIVE learning is a 

common machine learning methodology [1]. By 

using active learning, students will be able to learn 

more effectively. Revisions were made on March 4 

and June 27 of this year, and the manuscript was 

formally accepted on July 3. The National Natural 

Science Foundation of China, the Natural Science 

Foundation of Jiangsu Province of China, the China 

Postdoctoral Science Foundation, the Jiangsu 

Planned Projects for Postdoctoral Research Funds, 

and the Qing Lan Project of Jiangsu Province of 

China all contributed to this work. Digital Object 

Identifier With iterative human-computer interaction, 

a classification model may rapidly improve its 

performance by selecting and classifying just the 

most important examples. Since human experts are 

less burdened and training examples are less difficult, 

active learning's advantages lay in getting a 

classification model that performs as well as or better 

than the model with all instances labelled. Active 

learning models have been studied extensively in the 

past, and we have a variety of taxonomies for 

organising these models. It is possible to separate 

active learning into pool-based [2], stream-based [3] 

and stream-based models [4]. The former gathers and 

prepares all unlabeled instances, whilst the latter can 

only visit a batch of freshly received unlabeled data 

at a certain time interval.. We have single-mode and 

batch-mode learning models based on the number of 

labelled cases in each cycle [5]. The batch-mode 

model labels all of the unlabeled cases at once, while 

the single-mode model labels just one unlabeled 

instance every round, as their names imply. 

Uncertainty [6], [7], representativeness [8], 

inconsistency [9], variance [10), and error (11), 

among others, may be used to rank unlabeled 

examples. For each significance measure, the criteria 

for determining which instances are most critical for 

enhancing the classification model's performance are 

laid forth. Uncertainty, representativeness, and 

inconsistency all consider the most important 

unlabeled instance to be the one closest to the current 

classification boundary; inconsistency considers the 

unlabeled instance that has the most predictive 

divergence among multiple diverse baseline 

classifiers to be more significant; and uncertainty 

considers the most important unlabeled instance to be 

the one closest to the current classification boundary. 

Active learning models may also be categorised 

depending on the kind of classifier used in them. In 

order to meet the needs of active learning, many 
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well-known classifiers, including as naive Bayes, k-

nearest neighbours, decision trees, multi ple layered 

perceptrons, logistic regression, support vector 

machines (SVMs), and extreme learning machines 

have been created. Additionally, active learning has 

been used in a wide range of real-world applications, 

including video annotation, image retrieval, text 

classification, remote sensing image annotation, and 

voice recognition, as well as network intrusion 

detection and bioinformatics, throughout the last 

decade. With iterative human-computer interaction, a 

classification model may rapidly improve its 

performance by selecting and classifying just the 

most important examples. Since human experts are 

less burdened and training examples are less difficult, 

active learning's advantages lay in getting a 

classification model that performs as well as or better 

than the model with all instances labelled. Active 

learning models have been studied extensively in the 

past, and we have a variety of taxonomies for 

organising these models. It is possible to separate 

active learning into pool-based [2], stream-based [3] 

and stream-based models [4]. The former gathers and 

prepares all unlabeled instances, whilst the latter can 

only visit a batch of freshly received unlabeled data 

at a certain time interval.. We have single-mode and 

batch-mode learning models based on the number of 

labelled cases in each cycle [5]. The batch-mode 

model labels all of the unlabeled cases at once, while 

the single-mode model labels just one unlabeled 

instance every round, as their names imply. 

Uncertainty [6], [7], representativeness [8], 

inconsistency [9], variance [10), and error (11), 

among others, may be used to rank unlabeled 

examples. For each significance measure, the criteria 

for determining which instances are most critical for 

enhancing the classification model's performance are 

laid forth. Uncertainty, representativeness, and 

inconsistency all consider the most important 

unlabeled instance to be the one closest to the current 

classification boundary; inconsistency considers the 

unlabeled instance that has the most predictive 

divergence among multiple diverse baseline 

classifiers to be more significant; and uncertainty 

considers the most important unlabeled instance to be 

the one closest to the current classification boundary. 

Active learning models may also be categorised 

depending on the kind of classifier used in them. In 

order to meet the needs of active learning, many 

well-known classifiers, including as naive Bayes, k-

nearest neighbours, decision trees, multi ple layered 

perceptrons, logistic regression, support vector 

machines (SVMs), and extreme learning machines 

have been created. Additionally, active learning has 

been used in a wide range of real-world applications, 

including video annotation, image retrieval, text 

classification, remote sensing image annotation, and 

voice recognition, as well as network intrusion 

detection and bioinformatics, throughout the last 

decade. Recent studies show that active learning fails 

when it's applied to data with a skewed distribution of 

class members. Active learning, like conventional 

supervised learning, does not shy away from the issue 

of an unequal number of students in each class. A 

number of prior research have attempted to solve this 

issue using a variety of approaches. First to detect 

this issue, the authors Zhu and Hovy [25] used 

numerous sampling approaches into the active 

learning process to regulate the distribution of 

labelled cases between the minority and majority 

classes. RUS (Random Undersampling), ROS 

(Random Oversampling), and BOOTOS (bootstrap-

based Oversampling) all appeared in the study. Both 

ROS and BootOS may improve learning 

performance, but RUS is often poorer than the 

original active learning algorithm, according to the 

authors, who also found that RUS is more prone to 

overfitting. As another prominent class imbalance 

learning strategy, Bloodgood and Vijay-Shanker [26] 

used cost-sensitive learning in order to address 

skewed data distribution during active learning. In 

specifically, the basic learner was cost-sensitive SVM 

(CS-SVM), empirical costs were allocated based on 

the prior imbalance ratio, and two classical stopping 

criteria, i.e., the minimal error and the highest 

confidence, were used to discover the suitable 

stopping condition for active learning. In spite of the 

time-consuming nature of training an SVM and the 

lack of online learning, the approach is very 

successful. For instance, Tomanek [31] and Hahn 

[32] proposed two methods based on the 

inconsistency significance measure: balanced-batch 
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active learning (AL-BAB) and AL-BOOD, where the 

former selects from 5n new labels n labelled 

instances that are class balanced on each round of 

active learning, while the latter modifies the equation 

of voting entropy to focus on the minority class. 

When compared to RUS, AL-BAB has a lot in 

common, but it may be much worse and use up even 

more labelled resources since it relies on so many 

different base learners (semantic learning) to 

compute the voting entropy of predictive labels, 

which necessarily increases the computing burden. 

Consequently, in Section V, we did not compare our 

suggested technique to the methods listed above. 

Additionally, research has been done on how to 

address the issue of class imbalance by using active 

learning. Ertekin et al. [32, 33] found that the 

imbalance ratio is substantially lower at the border 

between two distinct classes, therefore active learning 

may effectively mitigate the detrimental 

consequences of unbalanced data distribution. Of put 

it another way, they see active learning as a particular 

approach to sampling. It is also advised that since 

they used SVM as their base learner, they should 

utilise an early stopping criteria of margin depletion 

to verify the stopping condition. As a summary of 

current active learning algorithms, we observed that 

they either suffer from poor classification 

performance or high time consumption difficulties in 

the case of uneven data distributions. This paper's 

goal is to provide a method that is both effective and 

efficient. AOW-ELM is the name of the suggested 

method, and it should be used in a batch-mode active 

learning scenario with an uncertainty significance 

measure and an ELM classifier. Because of its 

superior generality and classification performance 

compared to SVM and MLP [34], [35], as well as its 

potential to significantly reduce training time 

compared to other classifiers [36], we choose ELM as 

the baseline classifier for active learning. The 

weighted ELM (WELM) [37] is used as the basis 

learner in AOW-ELM to overcome the class 

imbalance issue in active learning. A framework for 

active learning is then built using our earlier paper's 

AL-ELM algorithm [21]. The next step is to develop 

a weight update algorithm and an efficient online 

learning mode for WELM. Finally, we provide a 

more flexible and effective early stop ping criteria 

that benefits from the notion of the margin 

exhaustion requirement. To that end, we look at the 

impact of three key distribution characteristics, 

namely the class imbalance ratio, class overlapping, 

and tiny disjunction, to see how they affect active 

learning. Furthermore, in order to prevent both the 

cold start and missing cluster impact, we recommend 

using the clustering approaches to pick a seed set that 

is already labelled. Using 32 binary-class unbalanced 

datasets, the findings show that the suggested 

algorithmic framework is typically more effective 

and efficient than various active learning algorithms 

that were explicitly created for the class imbalance 

situation. Listed below are the sections of this 

document. Prior to reading this article, you should 

have a basic understanding of the subject matter. 

Using synthetic data sets with varied distributions, 

we examine why active learning might be ruined by 

skewed instance distributions in Section III. In 

Section IV, we go into the specifics of the 

algorithmic framework we've come up with. Section 

V summarises and analyses the findings of the 

experiment. Finally, Section VI sums up the paper's 

findings and points to further research. 

PRELIMINARIES 

Preliminaries are shown here, covering the 

fundamental flow route of pool-based active learning, 

ELM and WESM as well as online sequential ELM 

and ELM-based active learning (AL-ELM). It is in 

Section IVA of this work where the main algorithmic 

paradigm is described. Pool-Based Active Learning's 

Flow Path The pool-based scenario is more typical in 

real-world applications, as described in Section I, and 

may be separated into two types according to distinct 

means of inputting the unlabeled data: pool-based 

[2], [3] and stream-based [4]. Unlabeled cases in a 

pool are pre-prepared, and then a random subset is 

selected. 
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Fig. 1. Flowchart of the pool-based active learning 

Active learning repeatedly retrieved and tagged by 

human specialists. Furthermore, the classification 

model is able to continually choose the most relevant 

examples from a pool of unlabeled examples. The 

pool-based active learning scenario is the subject of 

this research. Pool-based active learning is shown in 

Fig. 1 as a simple flow route. In this diagram, we can 

see that the flow route is divided into four sections 

and is a complete loop. It is necessary to train a 

classification model on the labelled data each time. A 

subset of the unlabeled instances is then selected for 

human annotation by the model, which ranks them 

according to their importance and sends only the 

most important ones to the annotators for further 

labelling. The method outlined above is called "active 

learning," and it is repeated until a certain condition 

is met. How to estimate, rank, and extract important 

unlabeled instances using the classification model is 

clearly the critical step in the flow route described 

above, as it directly affects the quality of active 

learning. B. The Extreme Learning Machine. 

Electronic Learning Mechanism (ELM) was 

developed by Huang et al. [34, 35] to train single-

hidden layer feed forward neural networks (SLFNs). 

It is the random creation of concealed nodes that 

makes ELM stand out from SLFN's typical learning 

methods. There are no iterative adjustments required 

by ELM in order to get optimum values, therefore it 

learns quicker and generalises better. Compared to 

SVM and MLP, previous studies have shown that 

ELM can yield superior generality and classification 

performance or at least be equivalent [34]–[36]. 

However, ELM requires tenths or hundredths of the 

training time. The ith training instance may be 

written as (xi, ti), where xi is a n1 input vector and ti 

is the associated m1 output vector in a classification 

problem with N training cases. All weights and biases 

on the L hidden nodes in ELM are created at random, 

and we may assume that this is the case. h(xi) = 

[h1(xi), h2(xi),..., hL (xi)] represents the hidden layer 

output for the instance xi. activation function 

mapping (the most popular sigmoid function is used 

throughout this paper). ELM's mathematical model 

might be referred to as 

 

C is the penalty factor that represents the tradeoff 

between the reduction of training mistakes and the 

maximum of generalisation ability, which is denoted 

by I = [i,1], [i,2,...,..., i,m].] The Karush–Kuhn–

Tucker theorem [38] may be used to solve a common 

quadratic programming issue. For (3), the answer 

may be summarised as follows. 

The D. Machine for Online Sequential Extreme 

Training When Liang et al. introduced OS-ELM in 

2006, they were referring to an online sequential 

learning mode of ELM. For training with sequentially 

obtained data, OS ELM uses extended recursive least 

squares, which may either be received one at a time 

or chunk by chunk. The update rule for the output 

layer weight matrix,, may be expressed in terms of 

the following: 

Where Hk+1 and Tk+1 represent new observations in 

the (k + 1)th chunks, and (k) and (k+1) designate the 

output layer weight matrix after receiving the kth and 

(k + 1)th chunks, respectively, in this case. The 

formula for Pk+1 may be found as follows: where 

When fresh observations are made in (k+1)th chunks, 

Hk+1, Tk+1 and (k) are the hidden layer output 

matrix and the target matrix, respectively. The output 

layer weight matrix after receiving kth and (k+1)th 

pieces is referred to as (k). The formula for Pk+1 may 

be found as follows: ELM outputs and Bayes 
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classifier posterior probabilities are linked via a 

mapping connection. The posterior probabilities 

corresponding to the distinct classes are more unclear 

and important for modelling the classifier when the 

actual outputs on different output nodes are more 

approximate. Classification model quality may be 

improved by labelling the most doubtful cases, such 

as those closest to the present classification 

hyperplane, as discussed in Section I. The sigmoid 

function is used to transform ELM's nonprobabilistic 

outputs into probabilistic outputs as follows:

 

 

INVESTIGATION INTO THE DISTRIBUTION 

A skewed distribution of data may quickly devastate 

typical active learning systems. To understand why, 

we look at data distribution. Class imbalance, class 

overlapping, and minor disjunction are all aspects 

that we examine while creating six synthetic 2-D 

binary-class unbalanced data sets. Table I 

summarises the distributions of these six data sets. 

Table I shows that data sets D1–D4 have the same 

distribution, although class imbalance ratios ranging 

from 2:1 to 200:1 may be seen. However, despite the 

fact that the class imbalance ratio in data set D5 is 

identical to that in data set D2, their distributions 

vary.

 

Data sets one through four are shown in Fig. 2 in their 

original distribution. Classification hyperplane 

generated by ELM on 10% randomly extracted initial 

labelled examples (L = 100, C = 210) is shown in the 

second row. A WELM classification hyperplane 

(L=100, C=210) on 10% of the original labelled 

examples is shown in the third row. One data set is 

represented by each column (D1 to D4), whereas and 

signify the majority class's unlabeled and labelled 

instances while and denote the minority class's 

unlabeled and labelled instances (from left to right). 

(See Fig. 2) The first four data sets are shown in their 

original distribution in the first row. ELM (L = 100, 

C = 210) generated a classification hyperplane on 

10% of the original labelled examples. A WELM 

classification hyperplane (L=100, C=210) on 10% of 

the original labelled examples is shown in the third 

row. the unlabeled and the labelled instances of the 

majority class are shown in and the unlabeled and 

labelled examples of the minority class are shown in 

accordingly, each column denoting a data set (D1–

D4) (from left to right). Data sets one through four 

are shown in Fig. 2 in their original distribution. 

Classification hyperplane generated by ELM on 10% 

randomly extracted initial labelled examples (second 

row) (L = 100, C = 210) Classification hyperplane 

obtained by WELM on 10% randomly extracted 

initial labelled examples (L = 100, C = 210) is shown 

in row 3. Each row represents a different set of data 

(D1–D4). as well as designate the majority class's and 

labelled instances, respectively; the same is true for 

and of the minority class (from left to right). 

 

 

ELM (L = 100, C = 210) and WELM (L = 100, C = 

210) generated the original distribution and 

classification hyperplane on 10% randomly extracted 

initial labelled cases of the D5 data set, respectively. 

In the majority class, and signify the unlabeled and 

labelled examples, while and denote the unlabeled 

and labelled instances of the minority class, 

ELM, for example, tends to yield a hyperplane closer 

to the majority class on the big margin class 

imbalance data set than on the short margin data set, 
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as seen in Fig. 2 and 3. To put it another way, as the 

margin grows, the damage will diminish. To counter 

this damage to regular classifiers, a balancing control 

approach must be implemented (compare the second 

subgraph with the third subgraph in Fig. 3). Within-

class subclusters, also known as minor disjunctions, 

are examined as a more sophisticated data 

distribution component. Subclasses and 

subdistributions in a single class might have varying 

numbers of subclasses and subdistributions. We 

confront both the issue of "between-class imbalance" 

and the problem of "within-class imbalance" on the 

skewed data set with minor disjunctions. If we take a 

look at the D6 data set, there are three clusters within 

each class with an imbalance ratio of 6:3:1. It is 

conceivable to permanently misclassify all instances 

in the tiny subclusters if none of the small subclusters 

are included in the first labelled set (seed set). The 

missing cluster effect [45] is the name given to this 

issue as a result of human error. On the large margin 

class imbalance data set, regular classifiers, such as 

ELM, generally produce a hyperplane that is closer to 

the majority class than that produced on the smaller 

margin data set (Fig. 2 and Fig. 3). We further 

observe that on the large margin data set, the 

hierarchical clustering technique is used to subtly 

explore the distribution structure of collected 

unlabeled instances. In other words, the harmfulness 

will diminish as the margin size increases. Even so, 

regular classifiers may still be harmed by it, hence a 

balancing management method must still be used 

(compare the second subgraph with the third 

subgraph in Fig. 3). Within-class subclusters, also 

known as minor disjunctions, are examined as a more 

sophisticated data distribution component. Subclasses 

and subdistributions in a single class might have 

varying numbers of subclasses and subdistributions. 

We confront both the issue of "between-class 

imbalance" and the problem of "within-class 

imbalance" on the skewed data set with minor 

disjunctions. If we take a look at the D6 data set, 

there are three clusters within each class with an 

imbalance ratio of 6:3:1. It is conceivable to 

permanently misclassify all instances in the tiny 

subclusters if none of the small subclusters are 

included in the first labelled set (seed set). The 

missing cluster effect [45] is the name given to this 

issue as a result of human error. The hierarchical 

clustering technique is used to investigate the 

distribution structure of the collected unlabeled 

instances, and by selecting the column in Fig. 2 with 

Fig. 3, we see that the regular classifier, e.g., ELM, 

generally produces a hyperplane that is closer to the 

majority class than the hyperplane produced on the 

small margin data set. In other words, the 

harmfulness will diminish as the margin size 

increases. Even so, regular classifiers may still be 

harmed by it, hence a balancing management method 

must still be used (compare the second subgraph with 

the third subgraph in Fig. 3). Within-class 

subclusters, also known as minor disjunctions, are 

examined as a more sophisticated data distribution 

component. Subclasses and subdistributions in a 

single class might have varying numbers of 

subclasses and subdistributions. We confront both the 

issue of "between-class imbalance" and the problem 

of "within-class imbalance" on the skewed data set 

with minor disjunctions. If we take a look at the D6 

data set, there are three clusters within each class 

with an imbalance ratio of 6:3:1. It is conceivable to 

permanently misclassify all instances in the tiny 

subclusters if none of the small subclusters are 

included in the first labelled set (seed set). The 

missing cluster effect [45] is the name given to this 

issue as a result of human error. The hierarchical 

clustering approach is used to investigate the 

distribution structure of the gathered unlabeled 

examples and to make more exact selections to solve 

this issue. 

AOW-ELM ALGORITHM MODEL 

An Extreme Learning Machine that may be used 

online. If you've been paying attention, you've seen 

that active learning uses an iterative process, in which 

new labelled instances are added to the set each time 

iteration is completed. Retraining the categorization 

model after each round would take a considerable 

amount of time. To implement active learning, an 

online learning algorithm must be used. The 

incremental class imbalance learning issue was 

addressed by Mirza et al. [47] using an online 

sequential WELM method. Even though ELM may 
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be generalised, this method only uses the least 

squares version of ELM and not its optimization 

version, limiting its generalizability. Its repetitive 

weight adjusting and ranking method, on the other 

hand, adds to the waste of time. An online imbalance 

learning technique based on a kernel was given in 

[48]. The method is helpful in combating online 

learning that is unbalanced and prone to drifting 

conceptualizations. Due to the fact that its instance 

weight is correlated with the number of training 

instances belonging to each class that have been 

acquired thus far, its applicability in our active 

learning scenario is limited. As a result, new 

instances will gradually lose weight, while the old 

ones will be highlighted. It's clear that it doesn't meet 

our needs. This work proposes a new online 

sequential WELM method based on the optimization 

version to eliminate these issues. Like the OS-ELM 

algorithm [39], it was derived in a similar manner. In 

light of (8), we may say 

 

 

VI. CONCLUSION 

AOW-ELM is a solution to the issue of active 

learning in a class imbalance situation that we offer 

in this work. Several variables contribute to the 

harmfulness of skewed data distribution, which we 

discover is really a mixture of these aspects. Using 

hierarchical clustering, the possible missing cluster 

effect and cold start phenomena may be efficiently 

addressed by extracting early representative instances 

into a seed set in advance. Using existing benchmark 

methods, the suggested AOW-ELM algorithm 

outperforms them all in addressing the issue of active 

learning in a class imbalance situation. The following 

are some of the advantages of the AOW-ELM 

algorithm. A weight update rule that is resilient is one 

of its advantages. 2) It runs quickly and linearly as 

the number of training examples increases. The early 

halting criteria is adjustable. A wide range of data 

sets may be used with it. Active learning on 

multiclass unbalanced data sets will be a major focus 

of our future work. We'll also look at active learning 

solutions for dealing with unlabeled and unbalanced 

data streams as well as managing idea drifts. 
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