Secure Cloud Enabled Platform for AI-Powered Computer Vision Syndrome Detection

Authors

  • Dr. Shaikh Abdul Hannan Assistant Professor, Faculty of Computing and Information, AlBaha University, Al-Baha, Kingdom of Saudi Arabia Author

DOI:

https://doi.org/10.63665/IJMEC.1102.03

Keywords:

Syndrome Detection, Computer Vision, Secure Cloud Platform, Deep Learning, CNN, Federated Learning

Abstract

Computer vision syndrome detection has become a significant discovery in the current healthcare system, as a way of diagnosing genetic and development disorders at an early stage with the help of facial features. Nevertheless, in practice, such systems must have high-level security, why privacy protection, and scalability in the case of sensitive patient information. This paper describes a safe cloud-based system that incorporates AI-based computer vision algorithms to detect syndromes automatically. The given framework makes use of using convolutional neural networks (CNNs) to extract facial features and make deep learning classifications using the Softmax probability-based syndrome prediction. Experimental evaluation was done using a 90 sample of faces images that consisted of Down Syndrome (33.3%), Williams Syndrome (22.2%), Turner Syndrome (16.7%), and other syndromes (27.8%). The gender representation was also fairly equal at 53.3/46.7 % males/females respectively. The site also has security features like encryption and privacy learning methods to secure the information of the patients in the cloud implementation.

Downloads

Download data is not yet available.

References

1. Kumar, V. AI-Powered Threat Identification and Categorization in a Combined Security Architecture for Cloud Computing Environments.

2. Menon, U. V., Kumaravelu, V. B., Kumar, C. V., Rammohan, A., Chinnadurai, S., Venkatesan, R., ... & Selvaprabhu, P. (2025). AI-powered IoT: A survey on integrating artificial intelligence with IoT for enhanced security, efficiency, and smart applications. IEEE Access.

3. Vasamsetty, C., Nippatla, R. P., Kadiyala, B., Alavilli, S. K., & Boyapati, S. (2024). AI-Powered Healthcare Services in Banking: A Hybrid Deep Learning Framework for Secure Cloud-Based Medical Data Processing. International Journal of HRM and Organizational Behavior, 12(2), 449-461.

4. Shaikh Abdul Hannan (2026), Smartphone-Based Mahchine Learning for Authomated Diagnosis using Eye, Skin and Voice Signals, International Journal of Computer Science Engineering Techniques (IJCSE), January 2026, ISSN: 2455-135X.

5. Radhakrishnan, P., Ramar, V. A., Kushala, K., Induru, V., & Palanisamy, P. (2024). Enhancing Threat Detection in Healthcare Systems Through Cloud-Based Security Solutions. International Journal of Multidisciplinary and Current Research, 12(2), 180-189.

6. Sheppard, A. L., & Wolffsohn, J. S. (2018). Digital eye strain: Prevalence, measurement and amelioration. BMJ Open Ophthalmology, 3(1), e000146.

7. Shaikh Abdul Hannan, "Implementation of Deep Learning System for the Detection and Identification of Neurological Illness," International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), December 2025.

8. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van Der Laak, J. A. W. M., Van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

9. Fernández-Alemán, J. L., Señor, I. C., Lozoya, P. Á. O., & Toval, A. (2013). Security and privacy in electronic health records: A systematic literature review. Journal of Biomedical Informatics, 46(3), 541–562.

10. Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., Bakas, S., Galtier, M. N., Landman, B. A., Maier-Hein, K., Ourselin, S., Sheller, M., Summers, R. M., Trask, A., Xu, D., Baust, M., & Cardoso, M. J. (2020). The future of digital health with federated learning. NPJ Digital Medicine, 3(1), 119.

11. Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for health care: A comprehensive survey. IEEE Access, 3, 678–708.

12. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

13. Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684–700. https://doi.org/10.1016/j.future.2015.09.021

14. Zhang, R., & Liu, L. (2010). Security models and requirements for healthcare application clouds. In 2010 IEEE 3rd International Conference on Cloud Computing (pp. 268–275). IEEE. https://doi.org/10.1109/CLOUD.2010.42

15. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.

16. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646.

17. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604.

18. Manoj Khandare, Shaikh Abdul Hannan and R.J. Ramteke, “Technique used in TTS for International Language : Review”, journal of Advance Research In Computer Engineering: An International Journal ", July to December 2009, issue of the journal.

19. Rosenfield, M. (2016). Computer vision syndrome: A review of ocular causes and potential treatments. Ophthalmic and Physiological Optics, 36(5), 502–515. https://doi.org/10.1111/opo.12315

20. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.

21. Kuo, A. M. H. (2011). Opportunities and challenges of cloud computing to improve health care services. Journal of Medical Internet Research, 13(3), e67. https://doi.org/10.2196/jmir.1867

22. Jang-Jaccard, J., & Nepal, S. (2014). A survey of emerging threats in cybersecurity. Journal of Computer and System Sciences, 80(5), 973–993.

23. Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Tan, G. S. W., Schmetterer, L., Keane, P. A., & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 167–175.

24. Kaissis, G. A., Makowski, M. R., Rückert, D., & Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305–311. https://doi.org/10.1038/s42256-020-0186-1

25. Kocabas, O., Soyata, T., & Aktas, M. K. (2016). Emerging security mechanisms for medical cyber physical systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(3), 401–416. https://doi.org/10.1109/TCBB.2015.2469655

26. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

27. Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. ITU Journal: ICT Discoveries, 1(1), 39–48.

28. Subashini, S., & Kavitha, V. (2011). A survey on security issues in service delivery models of cloud computing. Journal of Network and Computer Applications, 34(1), 1–11.

29. V. Chunduri, S. A. Hannan, G. M. Devi, V. K. Nomula, V. Tripathi, and S. S. Rajest, “Deep convolutional neural networks for lung segmentation for diffuse interstitial lung disease on HRCT and volumetric CT,” in Advances in Computational Intelligence and Robotics, IGI Global, USA, pp. 335–350, 2024

30. Shaikh Abdul Hannan, Pushparaj Pal, “Detection and classification of kidney disease using convolutional neural networks”, Journal of Neurology and Neurorehabilitation Research, Vol 8, Issue 2, pp 1-7, 2023.

31. Zebin, T.; Scully, P.J.; Peek, N.; Casson, A.J.; Ozanyan, K.B. Design and Implementation of a Convolutional Neural Network on an Edge Computing Smartphone for Human Activity Recognition. IEEE Access 2019, 7, 133509–133520.

32. Sidrah Liaqat, Kia Dashtipour, Kamran Arshad, and Naeem Ramzan. 2020. Non-invasive skin hydration level detection using machine learning. en. Electronics (Basel), 9, 7, (July 2020), 1086.

Downloads

Published

2026-02-10

Issue

Section

Articles

How to Cite

Secure Cloud Enabled Platform for AI-Powered Computer Vision Syndrome Detection . (2026). International Journal of Multidisciplinary Engineering In Current Research, 11(2), 21-27. https://doi.org/10.63665/IJMEC.1102.03