A Critical Review of Composite Phase Change Materials in Lithium-Ion Battery Thermal Management

Authors

  • Arpan Samanta Research Scholar, Department of Mechanical Engineering, RKDF Institute of science & technology, Bhopal Author
  • Dr. Nilesh Diwakar Principal, RKDF Institute of science & technology, Bhopal Author
  • Mr. Ritesh Khaterkar HOD, Department of Mechanical Engineering, RKDF Institute of science & technology, Bhopal Author

Keywords:

Composite phase change materials, Lithium-ion battery, Thermal management, Expanded graphite, Thermal conductivity, Thermal runaway

Abstract

The rapid adoption of lithium-ion batteries in electric vehicles has heightened concerns over thermal safety and performance optimization, particularly the prevention of thermal runaway. Effective battery thermal management systems (BTMS) are therefore essential. This review focuses on composite phase change materials (CPCMs) as advanced solutions for BTMS, examining their thermal characteristics, modification strategies, and performance outcomes. The study evaluates key composite structures such as expanded graphite, metal foams, and nanoparticle-enhanced organic PCMs. Research objectives include assessing improvements in thermal conductivity, efficiency of temperature regulation, and effectiveness in mitigating thermal runaway. Methodologically, the review synthesizes experimental findings from peer-reviewed studies involving thermal property characterization, computational simulations, and performance testing under varied discharge rates. Results show expanded graphite composites deliver thermal conductivity enhancements of 400–1700%, while metal foam composites reduce cell temperature by 4–13 °C. Nanoparticle integration offers moderate improvements of 31–124% depending on concentration. Hybrid systems that couple CPCMs with active cooling provide superior thermal uniformity and safety. The findings confirm that multi-component CPCMs with three-dimensional thermal networks hold strong potential as next-generation BTMS for electric vehicles.

Downloads

Download data is not yet available.

References

1. Al-Hallaj, S. (2022). Inorganic composite phase change materials for thermal runaway prevention in lithium-ion battery systems. Journal of Power Sources, 515, 230621.

2. Ali, S. A., Habib, K., Younas, M., Rahman, S., Das, L., Rubbi, F., Mulk, W. U., & Rezakazemi, M. (2024). Advancements in thermal energy storage: A review of material innovations and strategic approaches for phase change materials. Energy & Fuels, 38(20), 19336-19392. https://doi.org/10.1021/acs.energyfuels.4c03634

3. Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., & He, X. (2020). Thermal runaway mechanism of lithium-ion battery for electric vehicles: A review. Energy Storage Materials, 10, 246-267.

4. Jilte, R., Afzal, A., & Panchal, S. (2021). A novel battery thermal management system using nano-enhanced phase change materials. Energy, 219, 119564.

5. Kibria, M. G., Mohtasim, M. S., Paul, U. K., Fahim, I. A., Nafi, & Das, B. K., Mohammed, H. A. (2024). A review on composite phase change materials and fins-based Li-ion battery thermal management systems with design perspectives and future outlooks. Energy & Fuels, 38(15), 13637-13660. https://doi.org/10.1021/acs.energyfuels.4c02062

6. Kong, D., Peng, R., Ping, P., Du, J., Chen, G., & Wen, J. (2020). A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures. Energy Conversion and Management, 204, 112280.

7. Kshetrimayum, K. S., Yoon, Y. G., Gye, H. R., & Lee, C. J. (2019). Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Applied Thermal Engineering, 159, 113797.

8. Kumar, S. R. S., & Rao, G. A. P. (2024). Recent progress on battery thermal management with composite phase change materials. Energy Storage, 6(4), e647. https://doi.org/10.1002/est2.647

9. Kumar, M., Singh, R., Patel, V., & Kumar, A. (2025). Study on the battery thermal management system for cylindrical lithium-ion battery with nano-doped phase change material and liquid cooling. Scientific Reports, 15, 8884.

10. Li, M., Zhao, Y., Huang, H., & Chen, L. (2021). Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage. Renewable Energy, 178, 669-678.

11. Liu, Y., Yang, Y., Li, S., Zhao, Y., & Li, Y. (2023). Experimental study of phase transition heat of composite thermal energy storage materials paraffin wax/expanded graphite. Journal of Energy Storage, 73, 108953.

12. Liu, W., Zhang, X., Ji, J., Wu, Y., & Liu, L. (2021). A review on thermal properties improvement of phase change materials and its combination with solar thermal energy storage. Energy Technology, 9(7), 2100169.

13. Mousavi, S., Siavashi, M., & Zadehkabir, A. (2021). A new design for hybrid cooling of Li-ion battery pack utilizing PCM and mini channel cold plates. Applied Thermal Engineering, 197, 117398.

14. Paul, D., Nandi, A., Bhattacharyya, S., Das, S., & Biswas, N. (2025). A comprehensive review on lithium-ion battery thermal management (BTM) using phase change materials: advances, challenges, and future perspectives. Journal of Thermal Analysis and Calorimetry, 150(12), 9669-9722. https://doi.org/10.1007/s10973-025-14260-2

15. Rao, Z., Wang, Q., & Huang, C. (2016). Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system. Applied Energy, 164, 659-669.

16. Sarı, A., & Karaipekli, A. (2007). Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering, 27(8-9), 1271-1277.

17. Siavashi, M., Bahrami, H. R. T., & Saffari, H. (2020). Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. Journal of Energy Storage, 28, 101235.

18. Srivastava, G., Nandan, R., & Das, M. K. (2022). Thermal runaway management of Li ion battery using PCM: A parametric study. Energy Conversion and Management: X, 16, 100306.

19. Wang, Z., Zhang, Z., Jia, L., & Yang, L. (2015). Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Applied Thermal Engineering, 78, 428-436.

20. Wang, Y., Chen, Z., & Ling, X. (2023). Study on thermal runaway risk prevention of lithium-ion battery with composite phase change materials. Batteries, 6(5), 208. https://doi.org/10.3390/batteries6050208

21. Wilke, S., Schweitzer, B., Khateeb, S., & Al-Hallaj, S. (2017). Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. Journal of Power Sources, 340, 51-59.

22. Xiao, J., Zhang, P., Yang, T., Zeng, J., & Long, X. (2023). Fin structure and liquid cooling to enhance heat transfer of composite phase change materials in battery thermal management system. Energy Storage, 5, e453. https://doi.org/10.1002/est2.453

23. Xiao, X., Zhang, P., & Li, M. (2013). Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage. Energy Conversion and Management, 105, 272-284.

24. Xiao, C., Zhang, J., Zhang, G., Yang, C., Jiang, W., Chen, Y., & Tu, C. (2024). Recent progresses of battery thermal management systems based on phase change materials. Energy Technology, 12, e202400563. https://doi.org/10.1002/ente.202400563

25. Yu, X. K., & Tao, Y. B. (2022). Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity. International Journal of Heat and Mass Transfer, 196, 123274.

26. Zhang, G., Sun, Y., Wu, C., Yan, X., Zhao, W., & Peng, C. (2023). Low-cost and highly thermally conductive lauric acid-paraffin-expanded graphite multifunctional composite phase change materials for quenching thermal runaway of lithium-ion battery. Energy Reports, 9, 2538-2547.

27. Zhang, Y., Xu, Y., Chen, H., & Wang, Q. (2020). Thermal management investigation for lithium-ion battery module with different phase change materials. RSC Advances, 7, 48366-48374.

28. Zhi, M., Fan, R., Zheng, L., Yue, S., Pan, Z., Sun, Q., & Liu, Q. (2024). Experimental investigation on hydrated salt phase change material for lithium-ion battery thermal management and thermal runaway mitigation. Energy, 307, 132685. https://doi.org/10.1016/j.energy.2024.132685

29. Zou, D., Liu, X., He, R., Xu, S., Li, J., Zhang, C., & Li, Y. (2018). Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. International Journal of Heat and Mass Transfer, 120, 33-41.

Downloads

Published

2025-08-01

Issue

Section

Articles

How to Cite

A Critical Review of Composite Phase Change Materials in Lithium-Ion Battery Thermal Management. (2025). International Journal of Multidisciplinary Engineering In Current Research, 10(8), 98-104. https://ijmec.com/index.php/multidisciplinary/article/view/941