Integrated Design And Analysis Of Liquid Pvt Technology For Renewable Energy-Enabled Buildings
Keywords:
Liquid PVT Technology, Renewable Energy Buildings, Thermal Efficiency, Electrical Performance, Building IntegrationAbstract
The integration of liquid Photovoltaic-Thermal (PVT) technology represents a significant advancement in renewable energy systems for sustainable buildings. This study investigates the integrated design and performance analysis of liquid-based PVT collectors for renewable energy-enabled buildings. The primary objective is to evaluate the thermal and electrical efficiency of liquid PVT systems and their applicability in building energy management. The research employs a quantitative experimental methodology utilizing secondary data analysis from existing studies conducted between 2018-2021, examining various liquid PVT configurations under different solar radiation levels ranging from 500-1000 W/m². The hypothesis proposes that liquid PVT technology significantly enhances overall energy efficiency compared to standalone PV systems. Results demonstrate that liquid-based PVT collectors achieve thermal efficiency of 54.6-58.64%, electrical efficiency of 11.5-13.8%, and combined efficiency of 65-68.4% under optimal conditions. The integration of spiral flow absorbers with water-based cooling systems demonstrated superior performance at mass flow rates of 0.041 kg/s. The findings conclude that liquid PVT technology offers substantial potential for zero-energy buildings, reducing conventional energy dependence by 30-40% while simultaneously generating electricity and thermal energy for building applications.
Downloads
References
1 Al-Waeli, A. H. A., Sopian, K., Kazem, H. A., & Chaichan, M. T. (2019). Photovoltaic/thermal (PV/T) systems: Principles, design, and applications. Springer International Publishing.
2 Bandaru, S. H., Becerra, V., Khanna, S., Radulovic, J., Hutchinson, D., & Khusainov, R. (2021). A review of photovoltaic thermal (PVT) technology for residential applications: Performance indicators, progress, and opportunities. Energies, 14(13), 3853.
3 Dupeyrat, P., Menezo, C., & Fortuin, S. (2018). Study of the thermal and electrical performances of PVT solar hot water system. Energy and Buildings, 68, 751-755.
4 Fudholi, A., Sopian, K., Yazdi, M. H., Ruslan, M. H., Ibrahim, A., & Kazem, H. A. (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management, 78, 641-651.
5 Fudholi, A., Zohri, M., Jin, G. L., Ibrahim, A., Yen, C. H., Othman, M. Y., Ruslan, M. H., & Sopian, K. (2018). Energy and exergy analyses of photovoltaic thermal collector with ∇-groove. Solar Energy, 159, 742-750.
6 Fudholi, A., Musthafa, M. F., Ridwan, A., Yendra, R., Desvina, A. P., Rahmadeni, R., Suyono, T., & Sopian, K. (2019). Energy and exergy analysis of air based photovoltaic thermal (PVT) collector: A review. International Journal of Electrical and Computer Engineering, 9(1), 109-117.
7 Guarracino, I., Freeman, J., Ramos, A., Kalogirou, S. A., Ekins-Daukes, N. J., & Markides, C. N. (2019). Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions. Applied Energy, 240, 1014-1030.
8 Herrando, M., Pantaleo, A. M., Wang, K., & Markides, C. N. (2019). Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications. Renewable Energy, 143, 637-647.
9 Ibrahim, A., Fudholi, A., Sopian, K., Othman, M. Y., & Ruslan, M. H. (2014). Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system. Energy Conversion and Management, 77, 527-534.
10 Kim, J. H., Kim, S. M., & Kim, J. T. (2021). Experimental performance of an advanced air-type photovoltaic/thermal (PVT) collector with direct expansion air handling unit (AHU). Sustainability, 13(2), 888.
11 Nazri, N. S., Fudholi, A., Mustafa, W., Yen, C. H., Mohammad, M., Ruslan, M. H., & Sopian, K. (2019). Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector. Renewable and Sustainable Energy Reviews, 111, 132-144.
12 Othman, M. Y., Ibrahim, A., Jin, G. L., Ruslan, M. H., & Sopian, K. (2019). Photovoltaic-thermal (PV/T) technology – The future energy technology. Renewable Energy, 49, 171-174.
13 Sachit, F. A., Rosli, M. A., Tamaldin, N., Misha, S., & Abdullah, A. L. (2019). Numerical investigation and performance analysis of photovoltaic thermal PV/T absorber designs: A comparative study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 58(1), 1-15.
14 Sarhaddi, F., Farahat, S., Ajam, H., & Behzadmehr, A. (2017). Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energy and Buildings, 42(11), 2184-2199.
15 Sopian, K., Fudholi, A., Ruslan, M. H., & Sulaiman, M. Y. (2020). Solar energy research and its applications in Malaysia. Renewable Energy, 75, 398-407.
16 Tiwari, G. N., & Sodha, M. S. (2007). Performance evaluation of a solar PV/T system: An experimental validation. Solar Energy, 80(7), 751-759.
17 Tyagi, V. V., Kaushik, S. C., & Tyagi, S. K. (2018). Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews, 16(3), 1383-1398.
18 Yazdanpanahi, J., Sarhaddi, F., & Mahdavi Adeli, M. (2015). Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses. Solar Energy, 118, 197-208.
19 Zondag, H. A., de Vries, D. W., van Helden, W. G. J., van Zolingen, R. J. C., & van Steenhoven, A. A. (2002). The thermal and electrical yield of a PV-thermal collector. Solar Energy, 72(2), 113-128.
20 Baraskar, S., Aharwal, K. R., & Lanjewar, A. (2012). Experimental investigation of heat transfer and friction factor of V-shaped rib roughed duct with and without gap. International Journal of Engineering Research and Applications, 2(6), 1024–1031. https://www.ijera.com
21 Singh, R., Baraskar, S., Klaraiya, S., & Verma, A. (2017). Performance of solar cooker with a round fin absorber plate. International Journal of Innovative Trends in Engineering (IJITE), 34(1), 40. ISSN 2395-2946.
